Skip to main content

Advertisement

Log in

Unsupervised Segmentation of Head Tissues from Multi-modal MR Images for EEG Source Localization

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

In this paper, we present and evaluate an automatic unsupervised segmentation method, hierarchical segmentation approach (HSA)–Bayesian-based adaptive mean shift (BAMS), for use in the construction of a patient-specific head conductivity model for electroencephalography (EEG) source localization. It is based on a HSA and BAMS for segmenting the tissues from multi-modal magnetic resonance (MR) head images. The evaluation of the proposed method was done both directly in terms of segmentation accuracy and indirectly in terms of source localization accuracy. The direct evaluation was performed relative to a commonly used reference method brain extraction tool (BET)–FMRIB’s automated segmentation tool (FAST) and four variants of the HSA using both synthetic data and real data from ten subjects. The synthetic data includes multiple realizations of four different noise levels and several realizations of typical noise with a 20 % bias field level. The Dice index and Hausdorff distance were used to measure the segmentation accuracy. The indirect evaluation was performed relative to the reference method BET-FAST using synthetic two-dimensional (2D) multimodal magnetic resonance (MR) data with 3 % noise and synthetic EEG (generated for a prescribed source). The source localization accuracy was determined in terms of localization error and relative error of potential. The experimental results demonstrate the efficacy of HSA-BAMS, its robustness to noise and the bias field, and that it provides better segmentation accuracy than the reference method and variants of the HSA. They also show that it leads to a more accurate localization accuracy than the commonly used reference method and suggest that it has potential as a surrogate for expert manual segmentation for the EEG source localization problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Shirvany Y: Non-invasive EEG functional neuroimaging for localizing epileptic brain activity, PhD dissertation, ISBN: 978-91-7385-810-6, Sweden: Chalmers University of Technology, 2013

  2. Grech R, Cassar T, Muscat J, Camilleri K, Fabri SG, Zervakis M, Xanthopoulos P, Sakkalis V, Vanrumste B: Review on solving the inverse problem in EEG source analysis. J Neuro Eng Rehab 5:25, 2008

    Article  Google Scholar 

  3. Shirvany Y, Porras AR, Kowkabzadeh K, Mahmood Q, Lui H-S, Persson M: Investigation of brain tissue segmentation error and its effect on EEG source localization, Conf. Proc. IEEE Eng Med Biol Soc (EMBS), 2012, 1522–25

  4. Wolters CH, Anwander A, Tricoche X, Weinstein D, Koch MA, MacLeod RS: Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: a simulation and visualization study using high-resolution finite element modeling. Neuroimage 54:813–26, 2006

    Article  Google Scholar 

  5. Shirvany Y, Edelvik F, Jakobsson S, Hedström A, Mahmood Q, Chodorowski A, Persson M: Non-invasive EEG source localization using particle swarm optimization: a clinical experiment, Conf. Proc. IEEE Eng Med Biol. Soc (EMBS), 2012, 6232–5

  6. Ramon C, Schimpf PH, Haueisen J: Influence of head models on EEG source localizations and inverse source localizations. Biomed Eng Online 5:10, 2006. doi:10.1186/1475-925X-5-10

    Article  PubMed Central  PubMed  Google Scholar 

  7. Shirvany Y, Mahmood Q, Edelvik F, Persson M, Hedstrom A, Jakobsson S: Particle swarm optimization applied to EEG source localization of somatosensory evoked potentials. IEEE Trans Neural Syst Rehab Eng 11:20, 2013. doi:10.1109/TNSRE.2013.2281435

    Google Scholar 

  8. Yvert B, Bertrand O, Echallier J: Improved forward EEG calculations using local mesh refinement of realistic head geometries. Electroencephalogr Clin Neurophysiol 5:381–392, 1995

    Article  Google Scholar 

  9. Heinonen T, Eskola H: Segmentation of T1 MR scans for reconstruction of resistive head models. Comput Methods Prog Biomed 54:173–81, 1997

    Article  CAS  Google Scholar 

  10. Heinonena T, Dastidarb P, Frey F, Eskola H: Applications of MR image segmentation. Int J Bioelectromagnet 1:5–39, 1999

    Google Scholar 

  11. Acar ZA, Makeig S: Neuroelectromagnetic forward modeling toolbox. J Neurosci Methods 190:258–270, 2010

    Article  PubMed Central  PubMed  Google Scholar 

  12. Rullmann M, Anwander A, Dannhauer M, Warfield S, Duffy F, Wolter CH: EEG source analysis of epileptiform activity using a 1 mm anisotropic hexahedra finite element head model. Neuroimage 44:399–410, 2009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Lanfer B, Scherg M, Dannhauer M, Knösche TR, Burger M, Wolters CH: Influences of skull segmentation inaccuracies on EEG source analysis. Neuroimage 62:418–31, 2006

    Article  Google Scholar 

  14. Smith SM: Fast robust automated brain extraction. Hum Brain Mapp 17:143–155, 2002

    Article  PubMed  Google Scholar 

  15. Otsu N: A threshold selection method from gray level histogram. IEEE Trans Systems Man Cybernet 9:62–66, 1979

    Article  Google Scholar 

  16. Soille P: Morphological Image Analysis: Principles and Applications. Springer-Verlag 173–174, 1999

  17. Zhang Y, Brady M, Smith S: Segmentation of brain MR images through a hidden Markov random field model and the expectation maximization algorithm. IEEE Trans Med Imag 20:45–57, 2001

    Article  CAS  Google Scholar 

  18. Mayer A, Greenspan H: An adaptive mean-shift framework for MRI brain segmentation. IEEE Trans Med Imag 28:1238–1249, 2009

    Article  Google Scholar 

  19. Wen Y, He L, von Deneen KM, Lu Y: Brain tissue classification based on DTI using an improved fuzzy C-means algorithm with spatial constraints. Magn Reson Imaging 31(9):1623–30, 2013

    Article  PubMed  Google Scholar 

  20. Seber GAF: Multivariate Observations: Hoboken. Wiley, NJ, 1984

    Book  Google Scholar 

  21. Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW: Smith SM: FSL. Neuroimage 62:782–790, 2012

    Article  PubMed  Google Scholar 

  22. Comaniciu D, Meer P: Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24:603–619, 2002

    Article  Google Scholar 

  23. Comaniciu D, Ramesh V, Meer P: The variable bandwidth mean-shift and data-driven scale selection, ICCV 438–445, 2001

  24. Bors AG, Nasios N: Kernel bandwidth estimation for nonparametric modeling. IEEE Trans Systems Man Cybernet 39:1543–1555, 2009

    Article  Google Scholar 

  25. Cocosco CA, Kollokian V, Kwan RK-S, Evans AC: BrainWeb: online interface to a 3-D MRI simulated brain database. Neuroimage 5:S425, 1997

    Google Scholar 

  26. BrainWeb. Available at: http://brainweb.bic.mni.mcgill.ca/brainweb/about_sbd.html. Accessed August 2013.

  27. ITK-SNAP software. Available at: http://www.itksnap.org . Accessed August 2013.

  28. IXI datasets. Available at: http://www.brain-development.org. Accessed Sept. 2013.

  29. Wagner M: Rekonstruktion neuronaler Ströme aus bioelektrischen und biomagnetischen Messungen auf der aus MR-Bildern segmentierten Hirnrinde, PhD thesis, ISBN:3-8265-4293-2, Shaker-Verlag Aachen 1998

  30. Jenkinson M, Bannister PR, Brady JM, Smith SM: Improved optimisation for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17:825–841, 2002

    Article  PubMed  Google Scholar 

  31. Dice LR: Measures of the amount of ecologic association between species. Ecology 26:297–302, 1945

    Article  Google Scholar 

  32. Babalola KO, Patenaude B, Aljabar P, Schnabel J, Kennedy D, Crum W, Smith S, Cootes TF, Jenkinson M, Rueckert D: Comparison and evaluation of segmentation techniques for subcortical structures in brain MRI, Med Image Comput Assist Interv (MICCAI), 2008, 409–416

  33. Dietterich TG: Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput 10:1895–19, 1998

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The author Mr. Mahmood acknowledges scholarship funding from the Higher Education Commission of Pakistan (HEC) and Chalmers University of Technology in support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qaiser Mahmood.

Appendix

Appendix

A.1Bayesian-Based Adaptive Bandwidth Estimator

The bandwidth is modeled [24] by the a posteriori probability density function p(s|x) of local data spread or variance s given the data (feature) point x. Let M < n (total number of data points) be the number of nearest neighbors to a data sample x i. We can then define the pseudolikelihood

$$ P\left(s\Big|\mathbf{x}\right)=\prod_{j=1}^NP\left(s\Big|{\mathbf{x}}_{M_j}\right) $$
(10)

where \( P\left(s\Big|{\mathbf{x}}_{M_j}\right) \) is the probability of local data spread s depending on the M j nearest neighborhood samples to \( {\mathbf{x}}_{M_j} \) and {M j j=1,....,N} is the set of N such neighborhoods of various sizes. The evaluation of these probabilities over the entire set of M j is then given by

$$ P\left(s\Big|{\mathbf{x}}_{M_j}\right)={\displaystyle \int }P\left(s\Big|{M}_j,{\mathbf{x}}_{M_j}\right)P\left({M}_j\Big|{\mathbf{x}}_{M_j}\right)\ \mathrm{d}{M}_j $$
(11)

Applying Bayes rule we get

$$ P\left({M}_j\Big|{\mathbf{x}}_{M_j}\right)=\frac{P\left({\mathbf{x}}_{M_j}\Big|{M}_j\right)P\left({M}_j\right)}{P\left({\mathbf{x}}_{M_j}\right)} $$
(12)

where \( P\left({\mathbf{x}}_{M_j}\Big|{M}_j\right) \) is the probability of the data sample \( {\mathbf{x}}_{M_j} \) given the M j nearest neighborhood. Hereinafter, P(M j ) is considered to have uniform distribution on the interval [M 1, M 2]. Several values are selected for M j in this interval according to

$$ {M}_j = {M}_1+j\frac{M_2-{M}_1}{N} $$
(13)

For a given M j , the local variance s j is computed as

$$ {s}_j=\frac{{\displaystyle {\sum}_{l=1}^{M_j}}\parallel {\mathbf{x}}_{i,l}-{\mathbf{x}}_i{\parallel}^2}{M_j-1}\kern1.25em i=1,2\dots ..\ n\kern1em j=1,2,\dots N $$
(14)

where x i,j is the lth nearest neighbor to the data point x i . The distribution of variances is modeled as the Gamma distribution defined as

$$ p\left(s\Big|\alpha, \beta \right)=\frac{\beta^{\alpha }{s}^{\alpha -1}}{\Gamma \left(\alpha \right)}{e}^{-\beta s}\kern1.25em s\ge 0\kern1em \alpha, \beta >0 $$
(15)

where

$$ \varGamma (t)={\displaystyle \underset{0}{\overset{\infty }{\int }}}{r}^{t-1}{e}^{-r}\mathrm{d}r $$
(16)

is the Gamma function, and α and β define the shape and the scale of the Gamma distribution, respectively.

These parameters are estimated using the maximum likelihood approach [24]. The estimate of the adaptive bandwidth is identically the mean of this distribution, i.e.,

$$ \hat{h}\ \left({\mathbf{x}}_i\right)=\hat{\alpha}\hat{\beta}\kern1.25em i=1,2,\dots n $$
(17)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmood, Q., Chodorowski, A., Mehnert, A. et al. Unsupervised Segmentation of Head Tissues from Multi-modal MR Images for EEG Source Localization. J Digit Imaging 28, 499–514 (2015). https://doi.org/10.1007/s10278-014-9752-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-014-9752-6

Keywords

Navigation