Skip to main content

Advertisement

Log in

A Novel Similarity Learning Method via Relative Comparison for Content-Based Medical Image Retrieval

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

Nowadays, the huge volume of medical images represents an enormous challenge towards health-care organizations, as it is often hard for clinicians and researchers to manage, access, and share the image database easily. Content-based medical image retrieval (CBMIR) techniques are employed to facilitate the above process. It is known that a few concrete factors, including visual attributes extracted from images, measures encoding the similarity between images, user interaction, etc. play important roles in determining the retrieval performance. This paper concentrates on the similarity learning problem of CBMIR. A novel similarity learning paradigm is proposed via relative comparison, and a large database composed of 5,000 images is utilized to evaluate the retrieval performance. Extensive experimental results and comprehensive statistical analysis demonstrate the superiority of adopting the newly introduced learning paradigm, compared with several conventional supervised and semi-supervised similarity learning methods, in the presented CBMIR application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Frost, Sullivan: US Data storage management markets for healthcare. Online resource: http://www.frost.com

  2. ARRS GoldMiner: Online resource: http://goldminer.arrs.org/home.php

  3. Hearst M, Divoli A, Guturu H, Ksikes A, Nakov P, Wooldridge M, Ye J: BioText search engine: beyond abstract search. Bioinformatics 23(16):2196–2197, 2007

    Article  PubMed  CAS  Google Scholar 

  4. iMedline: Online resource: http://archive.nlm.nih.gov/iti/

  5. Müller H, Michoux N, Bandon D, Geissbuhler A: A review of content-based image retrieval systems in medical applications - clinical benefits and future directions. Int J Med Inform 73(1):1–23, 2004

    Article  PubMed  Google Scholar 

  6. Müller H, Deselaers T: Tutorial on medical image retrieval: content-based image retrieval. Med Inf Europe 2005. Online resource: http://thomas.deselaers.de/teaching/files/tutorial_mie06/ContentBasedImageRetrieval.pdf

  7. Tagare H, Jaffe C, Duncan J: Medical image databases: a content-based retrieval approach. J Am Med Inform Assoc 4(3):184–198, 1997

    Article  PubMed  CAS  Google Scholar 

  8. Ghosh P, Antani S, Long R, Thoma G: Review of medical image retrieval systems and future directions. IEEE Int Symp Computer-Based Med Syst 1:1–16, 2011

    Google Scholar 

  9. Sweet H, Mutalik P, Neklesa V, Horvath L, Lee C, Richter J, Tocino I, Fisher P: Voice-activated retrieval of mammography reference images. J Digit Imaging 11(2):65–73, 1998

    Article  Google Scholar 

  10. Oh J, Yang Y, El Naqa I: Adaptive learning for relevance feedback: application to digital mammography. Med Phys 37(8):4432–4444, 2010

    Article  PubMed  Google Scholar 

  11. El Naqa I, Yang Y, Galatsanos N, Nishikawa R, Wernick M: A similarity learning approach to content-based image retrieval: application to digital mammography. IEEE Trans Med Imaging 23(10):1233–1244, 2004

    Article  PubMed  Google Scholar 

  12. Kinoshita S, de Azevedo-Marques P, Pereira R, Rodrigues J, Rangayyan R: Content-based retrieval of mammograms using visual features related to breast density patterns. J Digit Imaging 20(2):172–190, 2007

    Article  PubMed  Google Scholar 

  13. Tourassi G, Harrawood B, Singh S, Lo J, Floyd C: Evaluation of information-theoretic similarity measures for content-based retrieval and detection of masses in mammography. Med Phys 34(1):140–150, 2007

    Article  PubMed  Google Scholar 

  14. Zheng B, Lu A, Hardesty L, Sumkin J, Hakim C, Ganott M, Gur D: A Method to improve visual similarity of breast masses for an interactive computer-aided diagnosis environment. Med Phys 33(1):111–117, 2006

    Article  PubMed  Google Scholar 

  15. Mazurowski M, Habas P, Zurada J, Tourassi G: Decision optimization of case-based computer-aided decision systems using genetic algorithms with application to mammography. Phys Med Biol 53(4):895–908, 2008

    Article  PubMed  Google Scholar 

  16. Dy J, Brodley C, Kak A, Broderick L, Aisen A: Unsupervised feature selection applied to content-based retrieval of lung images. IEEE Trans on Pattern Anal Mach Intell 25(3):373–378, 2003

    Article  Google Scholar 

  17. Shyu C, Brodley C, Kak A, Kosaka A, Aisen A, Broderick L: ASSERT: a physician-in-the-loop content-based retrieval system for HRCT image databases. Comp Vision Image Underst 75(1–2):111–132, 1999

    Article  Google Scholar 

  18. Lehmann T, Güld M, Thies C, Fischer B, Spitzer K, Keysers D, Ney H, Kohnen M, Schubert H, Wein B: Content-based image retrieval in medical applications. Methods Inf Med 43:354–361, 2004

    PubMed  CAS  Google Scholar 

  19. Huang W, Chan K, Li H, Lim J, Liu J, Wong T: A computer assisted method for nuclear cataract grading from slit-lamp images using ranking. IEEE Trans Med Imaging 30(1):94–107, 2011

    Article  PubMed  Google Scholar 

  20. Yang L, Jin R: Distance metric learning: a comprehensice survey. Online resource: http://www.cs.cmu.edu/liuy/frame_survey_v2.pdf

  21. Guo G, Jain A, Ma W, Zhang H: Learning similarity measure for natural image retrieval with relevance feedback. IEEE Trans Neural Netw 13:811–820, 2002

    Article  PubMed  CAS  Google Scholar 

  22. Hertz T, Bar-Hillel A, Weinshall D: Learning distance functions for image retrieval. IEEE Conf Comput Vis Pattern Recognit 2:570–577, 2004

    Google Scholar 

  23. Si L, Jin R, Hoi S, Lyu M: Collaborative image retrieval via regularized metric learning. Mulitmedia Systems 12:34–44, 2006

    Article  Google Scholar 

  24. Globerson A, Roweis S: Metric learning by collapsing classes. Adv Neural Inf Process Syst 1:451–458, 2005

    Google Scholar 

  25. Weinberger K, Blitzer J, Saul L: Distance metric learning for large margin nearest neighbor classification. Adv Neural Inf Process Syst 1:1473–1480, 2006

    Google Scholar 

  26. Zhu X: Semi-supervised learning literature survey, Online resource: citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.99.9681&rep=rep1&type=pdf

  27. Chapelle O, Scholkopf B, Zien A: Semi-supervised learning. MIT Press, 2006

  28. Xing E, Ng A, Jordan M, Russell S: Distance metric learning, with application to clustering with side-information. Adv Neural Inf Process Syst 1:505–512, 2003

    Google Scholar 

  29. Schultz M, Joachims T: Learning a distance metric from relative comparisons. Adv Neural Inf Process Syst 1:41–48, 2004

    Google Scholar 

  30. Schroff F: Harvesting image databases from the web. IEEE Trans Pattern Anal Mach Intell 33(4):754–766, 2011

    Article  PubMed  Google Scholar 

  31. Jing Y: VisualRank: applying pagerank to large-scale image search. IEEE Trans Pattern Anal Mach Intell 30(11):1877–1890, 2008

    Article  PubMed  Google Scholar 

  32. Siddiquie B: Image ranking and retrieval based on multi-attribute queries. IEEE Conf Comput Vis Pattern Recognit 1:801–808, 2011

    Google Scholar 

  33. Datta R, Joshi D, Li J, Wang J: Image retrieval: ideas, influences, and trends of the new age. ACM Comput Surv 40(2):5:1–5:60, 2008

    Article  Google Scholar 

  34. Kendall M: A new measure of rank correlation. Biometrika 30:81–93, 1938

    Google Scholar 

  35. World Health Organization: The world health report: life in the 21st century - a vision for all. Online resource: http://www.who.int/whr/1998/en/whr98_en.pdf, 1998

  36. Klein B, Klein R, Linton K, Magli Y, Neider M: Assessment of cataracts from photographs in the Beaver dam eye study. Ophthalmology 97(11):1428–1433, 1990

    PubMed  CAS  Google Scholar 

  37. Li C, Kao C, Gore J, Ding Z: Implicit active contours driven by local binary fitting energy. IEEE Conf Comput Vis Pattern Recognit 1:1–7, 2007

    CAS  Google Scholar 

  38. Rice J: Mathematical Statistics and Data Analysis, 2nd edition. Duxbury Press, 2007

  39. Gold C, Sollich P: Model selection for support vector machine classification. Neurocomputing 55:221–249, 2003

    Article  Google Scholar 

  40. Weston J: Leave-one-out support vector machines. Int Joint Conf Artif Intell 1:727–733, 1999

    Google Scholar 

  41. Chapelle O, Vapnik V, Bousquet O, Mukherjee S: Choosing multiple parameters for support vector machines. Mach Learn 46(1–3):131–159, 2002

    Article  Google Scholar 

  42. Weinberger K: Large margin NN classifier - matlab toolbox. Online resource http://www.weinbergerweb.net/Downloads/LMNN.html

  43. Chapelle O: Selection of kernel parameters - matlab toolbox. Online resource http://olivier.chapelle.cc/ams/

  44. Congdon N, Chang N, Botelho P, Stark W, Datiles III M: Cataract: clinical types. Duane’s Ophthalmology, 2006 edition, vol 1, chapter 73(B). Lippincott: Williams & Wilkins, 2006

  45. Zigler Jr J, Datiles III M: Pathogenesis of cataracts. Duane’s Ophthalmology, 2006 edition, vol 1, chapter 72(B). Lippincott: Williams & Wilkins, 2006

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Huang or Peng Zhang.

Appendix

Appendix

In Eq. 6, the second term \(\frac {\text {exp}\big (2(\ell _{(q,y)} - \ell _{(q,x)})\big )-1}{\text {exp}\big (2(\ell _{(q,y)} - \ell _{(q,x)})\big )+1}\) of the right-hand side (RHS) of SKT can be viewed as a coefficient in the derivation, since it is not related to parameters a to learn in this study. Thus, the following derivation only focuses on the first term \(\frac {\text {exp}\big (2(s_{(q,x)} - s_{(q,y)})\big )-1}{\text {exp}\big (2(s_{(q,x)} - s_{(q,y)})\big )+1}\) of RHS in SKT. For the ease of writing, let us denote the second term \(\frac {\text {exp}\big (2(\ell _{(q,y)} - \ell _{(q,x)})\big )-1}{\text {exp}\big (2(\ell _{(q,y)} - \ell _{(q,x)})\big )+1}\) as term coeff. After differentiation, Eq. 6 becomes:

$$\begin{array}{rll}\lefteqn{\bigtriangledown \textrm{SKT}(a) =\frac{1}{N_{n}}\cdot\left(\sum\limits_{x,y \in D, x \neq y}\right.\frac{2\cdot\text{exp}\big(2(s_{(q,x)} - s_{(q,y)})\big)\big(s_{(q,x)} - s_{(q,y)}\big)^{\prime}\cdot\Big(\text{exp}\big(2(s_{(q,x)} - s_{(q,y)})\big)+1\Big)}{\Big(\text{exp}\big(2(s_{(q,x)} - s_{(q,y)})\big)+1\Big)^{2}}}\\&&{\kern83pt}\left.\frac{-2\cdot\text{exp}\big(2(s_{(q,x)} - s_{(q,y)})\big)\big(s_{(q,x)} - s_{(q,y)}\big)^{\prime}\cdot\Big(\text{exp}\big(2(s_{(q,x)} - s_{(q,y)})\big)-1\Big)}{\Big(\text{exp}\big(2(s_{(q,x)} - s_{(q,y)})\big)+1\Big)^{2}}\cdot\textrm{\textit{coeff}}\right)\\&&{\kern30.5pt}= \frac{1}{N_{n}}\cdot\left(\sum\limits_{x,y \in D, x \neq y}\frac{4\cdot\text{exp}\big(2(s_{(q,x)} - s_{(q,y)})\big)\big(s_{(q,x)} - s_{(q,y)}\big)^{\prime}}{\text{exp}^{2}\big(2(s_{(q,x)} - s_{(q,y)})\big)+2\text{exp}\big(2(s_{(q,x)} - s_{(q,y)})\big)+1}\cdot \textrm{\textit{coeff}}\right)\\&&{\kern30.5pt}=\frac{1}{N_{n}}\cdot\left(\sum\limits_{x,y \in D, x \neq y}\frac{4\cdot\big(s_{(q,x)} - s_{(q,y)}\big)^{\prime}}{\text{exp}\big(2(s_{(q,x)} - s_{(q,y)})\big)+\text{exp}\big(2(s_{(q,y)} - s_{(q,x)})\big)+2}\cdot \textrm{\textit{coeff}}\right)\end{array} $$
(11)

Then, after replacing the term coeff with its original mathematical form, the gradient can be rewritten as:

$$ \bigtriangledown \textrm{SKT}(a) =\frac{1}{N_{n}}\cdot\left(\sum\limits_{x,y \in D, x \neq y}\frac{4\cdot\left(\frac{\partial s_{(q,x)}}{\partial a} - \frac{\partial s_{(q,y)}}{\partial a}\right)\cdot\frac{\text{exp}\big(2(\ell_{(q,y)} - \ell_{(q,x)})\big)-1}{\text{exp}\big(2(\ell_{(q,y)} - \ell_{(q,x)})\big)+1}}{\text{exp}\big(2(s_{(q,x)} - s_{(q,y)})\big)+ \text{exp}\big(2(s_{(q,y)} - s_{(q,x)})\big)+2}\right) $$
(12)

which is the same as Eq. 7.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, W., Zhang, P. & Wan, M. A Novel Similarity Learning Method via Relative Comparison for Content-Based Medical Image Retrieval. J Digit Imaging 26, 850–865 (2013). https://doi.org/10.1007/s10278-013-9591-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-013-9591-x

Keywords

Navigation