Skip to main content
Log in

Introduction to Grayscale Calibration and Related Aspects of Medical Imaging Grade Liquid Crystal Displays

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

Consistent presentation of digital radiographic images at all locations within a medical center can help ensure a high level of patient care. Currently, liquid crystal displays (LCDs) are the electronic display technology of choice for viewing medical images. As the inherent luminance (and thereby perceived contrast) properties of different LCDs can vary substantially, calibration of the luminance response of these displays is required to ensure that observer perception of an image is consistent on all displays. The digital imaging and communication in medicine (DICOM) grayscale standard display function (GSDF) defines the luminance response of a display such that an observer’s perception of image contrast is consistent throughout the pixel value range of a displayed image. The main purpose of this work is to review the theoretical and practical aspects of calibration of LCDs to the GSDF. Included herein is a review of LCD technology, principles of calibration, and other practical aspects related to calibration and observer perception of images presented on LCDs. Both grayscale and color displays are considered, and the influence of ambient light on calibration and perception is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4
Fig 5
Fig 6
Fig 7
Fig 8
Fig 9

Similar content being viewed by others

References

  1. Blume H, Roehrig H, Browne M, Lan Ji T: Comparison of the physical performance of high resolution CRT displays and films recorded by laser image printers and displayed on light-boxes and the need for a display standard. Medical Imaging IV: Image Capture and Display. SPIE 1232:97–114, 1990

    Article  Google Scholar 

  2. Blume H: The ACR/NEMA proposal for a grey-scale display function standard. Image Display. SPIE 2707:344–360, 1996

    Article  Google Scholar 

  3. Flynn MJ, Kanicki J, Badano A, Meyer WR: High-fidelity electronic display of digital radiographs. RadioGraphics 19:1653–1669, 1999

    PubMed  CAS  Google Scholar 

  4. Samei E, Badano A, Chakraborty D, Compton K, Cornelius C, Corrigan K, Flynn MJ, Hemminger B, Hangiandreou N, Johnson J, Moxley M, Pavlicek W, Roehrig H, Rutz L, Shepard J, Uzenoff R, Wang J, Willis C. Assessment of Display Performance for Medical Imaging Systems, Report of the American Association of Physicists in Medicine (AAPM) Task Group 18. Madison, WI: Medical Physics Publishing, AAPM On-Line Report No. 03, April 2005

  5. Barten PGJ: Contrast sensitivity of the human eye and its effects on image quality. Bellingham, WA: SPIE Press, 1999

    Google Scholar 

  6. Digital Imaging and Communications in Medicine, Part 14: Grayscale Standard Display Function, published by National Electrical Manufacturer’s Association, 2001

  7. Roehrig H, Chawla A, Krupinski E, Fan J, Gandhi K: Why should you calibrate your display? Penetrating Radiation Systems and Applications V. SPIE 5199:181–192, 2003

    Article  Google Scholar 

  8. Ogawa E, Shimura K: Appearance matching of radiographic images using lightness index. Image Perception and Performance. SPIE 3663:324–332, 1999

    Article  Google Scholar 

  9. Blume H, Ho AM, Stevens F, Steven PM: Practical aspects of grayscale calibration of display systems. PACS and Integrated Medical Information Systems: Design and Evaluation. SPIE 4323:28–41, 2001

    Article  Google Scholar 

  10. Tyler CW, Chan H, Liu L, McBride B, Kontsevich L: How to get 1786 or more grey levels from an 8-bit color monitor. Human Vision, Visual Processing, and Digital Display III. SPIE 1666:351–364, 1992

    Article  Google Scholar 

  11. Flynn M, Tchou P: Accurate measurement of monochrome luminance palettes for the calibration of medical LCD monitors. Visualization, Image-Guided Procedures, and Display. SPIE 5029:438–448, 2003

    Article  Google Scholar 

  12. Courtesy of F. Stevens, Planar Systems, Inc., Waltham, MA, 2006

  13. Hecht S, Hsia Y: Relation between visual acuity and illumination. J Gen Physiol 11:255–281, 1928

    Article  CAS  Google Scholar 

  14. Blume H, Steven PM, Cobb M, Ho AM, Stevens F, Muller S, Roehrig H, Fans J: Characterization of high-resolution liquid-crystal displays for medical images. Visualization, Image-Guided Procedures, and Display. SPIE 4681:271–292, 2002

    Article  Google Scholar 

  15. Langer S, Fetterly K, Mandrekar J, Harmsen S, Bartholmai B, Patton C, Bishop A, McCannel C: ROC Study of four LCD displays under typical medical center lighting conditions. J Digit Imaging 19:30–40, 2006

    Article  PubMed  Google Scholar 

  16. Saunders RS, Samei E: Resolution and noise measurements of selected commercial medical displays. Med Phys 33(2):308–319, 2006

    Article  PubMed  Google Scholar 

  17. Blume H, Steven PM, Ho AM, Stevens F, Abileah A, Robinson S, Roehrig H, Fan J, Chawla A, Ghandi K: Characterization of liquid-crystal displays for medical images—Part 2. Visualization, Image-Guided Procedures, and Display. SPIE 5029:449–473, 2003

    Article  Google Scholar 

  18. Badano A, Flynn M, Martin S, Kanicki J: Angular dependence of the luminance and contrast in medical monochrome liquid crystal displays. Med Phys 30:260–22613, 2003

    Article  PubMed  Google Scholar 

  19. Samei E, Wright SL: Viewing angle performance of medical liquid crystal displays. Med Phys 33:645–654, 2006

    Article  PubMed  Google Scholar 

  20. Fetterly K, Samei E: A photographic technique for assessing the viewing-angle performance of liquid-crystal displays. J Soc Inf Disp 14:867–872, 2006

    Article  Google Scholar 

  21. Badano A, Fifadara DH: Goniometric and conoscopic measurements of angular display contrast for one-, three-, five-, and nine-million-pixel medical liquid crystal displays. Med Phys 31:3452–3460, 2004

    Article  PubMed  Google Scholar 

  22. Fisher AJ, Christie AW: A note on disability glare. Vision Res 5:565–571, 1965

    Article  PubMed  CAS  Google Scholar 

  23. Reading VM: Disability glare and age. Vision Res 8:207–214, 1968

    Article  PubMed  CAS  Google Scholar 

  24. Vos JJ: On the cause of disability glare and its dependence on glare angle, age and ocular pigmentation. Clin Exp Optom 86:363–370, 2003

    Article  PubMed  Google Scholar 

  25. McEntee M, Brennan P, Evanoff M, Phillps P, O Connor WT, Manning D: Optimum ambient lighting conditions for the viewing of softcopy radiological images. Image Perception, Observer Performance, and Technology Assessment. SPIE 6146:260–268, 2006

    Google Scholar 

  26. Fan J, Roehrig H, Sundareshan MK, Dallas WJ, Krupinski E: Increasing contrast resolution and decreasing spatial noise for liquid crystal displays using digital dithering. Visualization, Display, and Image-Guided Procedures. SPIE 5744:251–262, 2005

    Article  Google Scholar 

  27. Siegel E, Krupinski E, Samei E, Flynn MJ, Andriole K, Erickson B, Thomas J, Badano A, Seibert JA, Pisano E: Digital mammography image quality-image display. Journal of American College of Radiology (in press, 2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth A. Fetterly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fetterly, K.A., Blume, H.R., Flynn, M.J. et al. Introduction to Grayscale Calibration and Related Aspects of Medical Imaging Grade Liquid Crystal Displays. J Digit Imaging 21, 193–207 (2008). https://doi.org/10.1007/s10278-007-9022-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-007-9022-y

Key words

Navigation