Abrahão, S., Bourdeleau, F., Cheng, B.H.C., Kokaly, S., Paige, R.F., Störrle, H., Whittle, J.: User experience for model-driven engineering: Challenges and future directions. In: 20th ACM/IEEE International Conference on Model Driven Engineering Languages and Systems, MoDELS, pp. 229–236. IEEE Computer Society (2017)
Acceleo. https://www.eclipse.org/acceleo/ (2020)
Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005)
Article
Google Scholar
Adomavicius, G., Tuzhilin, A.: Context-aware recommender systems. In: Recommender Systems Handbook, pp. 217–253. Springer (2011)
Agt-Rickauer, H., Kutsche, R., Sack, H.: Automated recommendation of related model elements for domain models. In: 6th International Conference on Model-Driven Engineering and Software Development (MODELSWARD), Revised Selected Papers, volume 991 of CCIS, pp. 134–158. Springer (2018)
Agt-Rickauer, H., Kutsche, R., Sack, H.: DoMoRe—a recommender system for domain modeling. In: 6th International Conference on Model-Driven Engineering and Software Development (MODELSWARD), pp. 71–82. SciTePress (2018)
Almonte, L., Cantador, I., Guerra, E., de Lara, J.: Towards automating the construction of recommender systems for low-code development platforms. In: 1st LowCode Workshop (LowCode@MoDELS), pp. 66:1–66:10. ACM (2020)
Anguel, F., Amirat, A., Bounour, N.: Hybrid approach for metamodel and model co-evolution. In: 5th IFIP TC 5 International Conference on Computer Science and its Applications (CIIA), pp. 563–573. Springer (2015)
Aquino, E.R., de Saqui-Sannes, P., Vingerhoeds, R.A.: A methodological assistant for use case diagrams. In: 8th International Conference on Model-Driven Engineering and Software Development (MODELSWARD), pp. 227–236. SciTePress (2020)
Avazpour, I., Grundy, J., Grunske, L.: Specifying model transformations by direct manipulation using concrete visual notations and interactive recommendations. J. Vis. Lang. Comput. 28, 195–211 (2015)
Article
Google Scholar
Barriga, A., Rutle, A., Heldal, R.: Improving model repair through experience sharing. J. Object Technol. 19(2):13:1-21 (2020)
Batot, E., Kessentini, W., Sahraoui, H.A., Famelis, M.: Heuristic-based recommendation for metamodel—OCL coevolution. In: 20th ACM/IEEE International Conference on Model Driven Engineering Languages and Systems (MoDELS), pp. 210–220. IEEE Computer Society (2017)
Baudry, B., Ghosh, S., Fleurey, F., France, R.B., Traon, Y.L., Mottu, J.: Barriers to systematic model transformation testing. Commun. ACM 53(6), 139–143 (2010)
Article
Google Scholar
Bellogín, A., Cantador, I., Castells, P.: A comparative study of heterogeneous item recommendations in social systems. Inf. Sci. 221, 142–169 (2013)
MathSciNet
Article
Google Scholar
Berkovsky, S., Cantador, I., Tikk, D.: Collaborative Recommendations: Algorithms, Practical Challenges and Applications. World Scientific (2018)
Bin Abid, S., Mahajan, V., Lucio, L.: Machine learning for learnability of MDD tools. In: 31st International Conference on Software Engineering and Knowledge Engineering (SEKE), pp. 355–468 (2019)
Bobek, S., Baran, M., Kluza, K., Nalepa, G.J.: Application of bayesian networks to recommendations in business process modeling. In: Workshop AI Meets Business Processes co-located with AI*IA, volume 1101 of CEUR Workshop Proceedings, pp. 41–50 (2013)
Borg, M., Wnuk, K., Regnell, B., Runeson, P.: Supporting change impact analysis using a recommendation system: an industrial case study in a safety-critical context. IEEE Trans. Softw. Eng. 43(7), 675–700 (2017)
Article
Google Scholar
Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in Practice, 2nd edn. Synthesis Lectures on Software Engineering. Morgan & Claypool Publishers (2017)
Brooke, J., et al.: SUS-a quick and dirty usability scale. Usab. Eval. Ind. 189(194), 4–7 (1996)
Google Scholar
Brosch, P., Seidl, M., Kappel, G.: A recommender for conflict resolution support in optimistic model versioning. In: ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications, SPLASH/OOPSLA Companion, pp. 43–50. ACM (2010)
Burke, R.: Knowledge-based recommender systems. Encycl. Libr. Inf. Syst. 69(Supplement 32), 175–186 (2000)
Google Scholar
Burke, R.: Hybrid recommender systems: survey and experiments. User Model. User-Adap. Interact. 12(4), 331–370 (2002)
MATH
Article
Google Scholar
Cai, C., Sun, J., Dobbie, G.: Automatic B-model repair using model checking and machine learning. Autom. Softw. Eng. 26(3), 653–704 (2019)
Article
Google Scholar
Cawley, G.C., Talbot, N.L.C.: On over-fitting in model selection and subsequent selection bias in performance evaluation. J. Mach. Learn. Res. 11, 2079–2107 (2010)
MathSciNet
MATH
Google Scholar
Cerqueira, T., Ramalho, F., Marinho, L.B.: A content-based approach for recommending UML sequence diagrams. In: 28th International Conference on Software Engineering and Knowledge Engineering (SEKE), pp. 644–649 (2016)
Chowdhury, S.R., Daniel, F., Casati, F.: Recommendation and weaving of reusable mashup model patterns for assisted development. ACM Trans. Internet. Technol. 14(2–3), 21:1–21:23 (2014)
Clarisó, R., Cabot, J.: Fixing defects in integrity constraints via constraint mutation. In: 11th International Conference on the Quality of Information and Communications Technology (QUATIC), pp. 74–82. IEEE Computer Society (2018)
de Lara, J., Vangheluwe, H.: AToM\(^3\): a tool for multi-formalism and meta-modelling. In: 5th International Conference on Fundamental Approaches to Software Engineering (FASE), volume 2306 of Lecture Notes in Computer Science, pp. 174–188. Springer (2002)
de Oliveira, M.C., Freitas, D., Bonifácio, R., Pinto, G., Lo, D.: Finding needles in a haystack: leveraging co-change dependencies to recommend refactorings. J. Syst. Softw. 158, 110420 (2019)
Article
Google Scholar
Deng, S., Wang, D., Li, Y., Cao, B., Yin, J., Wu, Z., Zhou, M.: A recommendation system to facilitate business process modeling. IEEE Trans. Cybern. 47(6), 1380–1394 (2017)
Article
Google Scholar
Dey, A.K.: Understanding and using context. Pers. Ubiquit. Comput. 5(1), 4–7 (2001)
Article
Google Scholar
Dwyer, M. B., Avrunin, G. S., Corbett, J. C.: Patterns in property specifications for finite-state verification. In: 21st International Conference on Software Engineering (ICSE), pp. 411–420. ACM (1999)
Dyck, A., Ganser, A., Lichter, H.: Enabling model recommenders for command-enabled editors. In: 1st International Workshop on Model-driven Engineering By Example (MDEBE@MoDELS), volume 1104 of CEUR Workshop Proceedings, pp. 12–21 (2013)
Dyck, A., Ganser, A., Lichter, H.: A framework for model recommenders—requirements, architecture and tool support. In: 2nd International Conference on Model-Driven Engineering and Software Development (MODELSWARD), pp. 282–290. SciTePress (2014)
Dyck, A., Ganser, A., Lichter, H.: On designing recommenders for graphical domain modeling environments. In: 2nd International Conference on Model-Driven Engineering and Software Development (MODELSWARD), pp. 291–299. SciTePress (2014)
Elkamel, A., Gzara, M., Ben-Abdallah, H.: An UML class recommender system for software design. In: 13th IEEE/ACS International Conference of Computer Systems and Applications (AICCSA), pp. 1–8. IEEE Computer Society (2016)
Florez, H., Sánchez, M. E., Villalobos, J., Vega, G.: Coevolution assistance for enterprise architecture models. In: 6th International Workshop on Models and Evolution (ME@MoDELS), pp. 27–32. ACM (2012)
France, R.B., Bieman, J.M., Mandalaparty, S.P., Cheng, B.H.C., Jensen, A.C.: Repository for model driven development (remodd). In: 34th International Conference on Software Engineering (ICSE), pp. 1471–1472. IEEE Computer Society (2012)
Garbe, H.: Intelligent assistance in a problem solving environment for UML class diagrams by combining a generative system with constraints. In: eLearning, IADIS (2012)
Gasparic, M., Janes, A.: What recommendation systems for software engineering recommend: a systematic literature review. J. Syst. Softw. 113, 101–113 (2016)
Article
Google Scholar
Gomes, P.: Software design retrieval using bayesian networks and wordnet. In: 7th European Conf. on Advances in Case-Based Reasoning (ECCBR), volume 3155 of Lecture Notes in Computer Science, pp. 184–197. Springer (2004)
Großkopf, A., Brunnert, J., Wehrmeyer, S., Weske, M.: Bpmncommunity.org: a forum for process modeling practitioners - A data repository for empirical BPM research. In: Business Process Management Workshops, BPM, volume 43 of Lecture Notes in Business Information Processing, pp. 525–528. Springer (2010)
Guerra, E., de Lara, J., Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W., Schönböck, J., Schwinger, W.: Automated verification of model transformations based on visual contracts. Autom. Softw. Eng. 20(1), 5–46 (2013)
Article
Google Scholar
Gunawardana, A., Shani, G.: Evaluating recommender systems. In: Recommender Systems Handbook, pp. 265–308. Springer (2015)
Guy, I.: Social recommender systems. In: Recommender Systems Handbook, pp. 511–543. Springer (2015)
Hayashi, S., YiBing, P., Sato, M., Mori, K., Sejeon, S., Haruna, S.: Test driven development of UML models with SMART modeling system. In: 7th International Conference on The Unified Modelling Language: Modelling Languages and Applications (UML), volume 3273 of Lecture Notes in Computer Science, pp. 395–409. Springer (2004)
He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.-S.: Neural collaborative filtering. In: 26th International Conference on the World-Wide Web (WWW), pp. 173–182 (2017)
Heinemann, L.: Facilitating reuse in model-based development with context-dependent model element recommendations. In: 3rd International Workshop on Recommendation Systems for Software Engineering (RSSE), pp. 16–20. IEEE (2012)
Hornung, T., Koschmider, A., Lausen, G.: Recommendation based process modeling support: method and user experience. In: 27th International Conference on Conceptual Modeling (ER), volume 5231 of Lecture Notes in Computer Science, pp. 265–278. Springer (2008)
Hornung, T., Koschmider, A., Oberweis, A.: A recommender system for business process models. Inf. Technol., Syst. 47, 1380–1394 (2009)
Huh, J., Grundy, J.C., Hosking, J.G., Li, K.N., Amor, R.: Integrated data mapping for a software meta-tool. In: 20th Australian Software Engineering Conference (ASWEC), pp. 111–120. IEEE Computer Society (2009)
Iovino, L., Barriga, A., Rutle, A., Heldal, R.: Model repair with quality-based reinforcement learning. J. Object Technol. 19(2):17:1–21 (2020)
Jackson, D.: Software Abstractions—Logic, Language, and Analysis. MIT Press (2006). http://alloytools.org/
Jannach, D., Jugovac, M., Lerche, L.: Supporting the design of machine learning workflows with a recommendation system. ACM Trans. Interact. Intell. Syst. 6(1), 8:1–8:35 (2016)
Jannach, D., Zanker, M., Felfernig, A., Friedrich, G.: Recommender Systems–An Introduction. Cambridge University Press (2010)
Jézéquel, J., Combemale, B., Barais, O., Monperrus, M., Fouquet, F.: Mashup of metalanguages and its implementation in the Kermeta language workbench. Softw. Syst. Model. 14(2), 905–920 (2015)
Article
Google Scholar
Jiang, H., Zhang, J., Li, X., Ren, Z., Lo, D., Wu, X., Luo, Z.: Recommending new features from mobile app descriptions. ACM Trans. Softw. Eng. Methodol. 28(4), 22:1–22:29 (2019)
Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: a model transformation tool. Sci. Comput. Progr. 72(1–2), 31–39 (2008)
MathSciNet
MATH
Article
Google Scholar
Kahloun, F., Ghannouchi, S.A.: Improvement of quality for business process modeling driven by guidelines. In: 22nd International Conference on Knowledge-Based and Intelligent Information & Engineering Systems (KES), volume 126 of Procedia Computer Science, pp. 39–48. Elsevier (2018)
Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-oriented domain analysis (FODA) feasibility study. Technical Report CMU/SEI-90-TR-021, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA (1990)
Kelly, S., Tolvanen, J.: Domain-Specific Modeling-Enabling Full Code Generation. Wiley (2008)
Khider, H., Hammoudi, S., Benna, A., Meziane, A.: Social business process model recommender: An MDE approach. In: 5th International Conference on Social Networks Analysis, Management and Security (SNAMS), pp. 106–113. IEEE (2018)
Khider, H., Hammoudi, S., Meziane, A.: Business process model recommendation as a transformation process in MDE: conceptualization and first experiments. In: 8th International Conference on Model-Driven Engineering and Software Development (MODELSWARD), pp. 65–75. SciTePress (2020)
Kim, M.C., Chen, C.: A scientometric review of emerging trends and new developments in recommendation systems. Scientometrics 104(1), 239–263 (2015)
Article
Google Scholar
Kluza, K., Baran, M., Bobek, S., Nalepa, G.J.: Overview of recommendation techniques in business process modeling. In: Proceedings of 9th Workshop on Knowledge Engineering and Software Engineering (KESE9), volume 1070 of CEUR Workshop Proceedings. CEUR-WS.org (2013)
Knijnenburg, B.P., Willemsen, M.C.: Evaluating recommender systems with user experiments. In: Recommender Systems Handbook, pp. 309–352. Springer (2015)
Kögel, S.: Recommender system for model driven software development. In: 11th Joint Meeting on Foundations of Software Engineering (ESEC/FSE), pp. 1026–1029. ACM (2017)
Kögel, S., Groner, R., Tichy, M.: Automatic change recommendation of models and meta models based on change histories. In: 10th Workshop on Models and Evolution (ME@MoDELS), volume 1706 of CEUR Workshop Proceedings, pp. 14–19 (2016)
Koren, Y., Bell, R.: Advances in collaborative filtering. In: Recommender Systems Handbook, pp. 77–118. Springer (2015)
Koschmider, A., Hornung, T., Oberweis, A.: Recommendation-based editor for business process modeling. Data Knowl. Eng. 70(6), 483–503 (2011)
Article
Google Scholar
Kuschke, T., Mäder, P.: RapMOD - in situ auto-completion for graphical models: poster. In: 39th International Conference on Software Engineering (ICSE), Companion Volume, pp. 303–304. IEEE Computer Society (2017)
Kuschke, T., Mäder, P., Rempel, P.: Recommending auto-completions for software modeling activities. In: 16th International Conference on Model-Driven Engineering Languages and Systems (MoDELS), volume 8107 of Lecture Notes in Computer Science, pp. 170–186. Springer (2013)
Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J., Thomason, C., Nordstrom, G., Sprinkle, J., Volgyesi, P.: The generic modeling environment. In: Workshop on Intelligent Signal Processing, vol. 17, p. 1 (2001)
Li, Y., Cao, B., Xu, L., Yin, J., Deng, S., Yin, Y., Wu, Z.: An efficient recommendation method for improving business process modeling. IEEE Trans. Ind. Inf. 10(1), 502–513 (2014)
Article
Google Scholar
López, J.A.H., Cuadrado, J.S.: MAR: a structure-based search engine for models. In: ACM/IEEE 23rd International Conference on Model Driven Engineering Languages and Systems (MoDELS), pp. 57–67. ACM (2020)
Lops, P., De Gemmis, M., Semeraro, G.: Content-based recommender systems: State of the art and trends. In: Recommender Systems Handbook, pp. 73–105. Springer (2011)
Maki, S., Kpodjedo, S., Boussaidi, G.E.: Context extraction in recommendation systems in software engineering: a preliminary survey, pp. 151–160. In: IBM Corp (2015)
Mani, S., Sinha, V.S., Dhoolia, P., Sinha, S.: Automated support for repairing input-model faults. In: 25th IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 195–204. ACM (2010)
Masthoff, J.: Group recommender systems: Combining individual models. In: Recommender Systems Handbook, pp. 677–702. Springer (2011)
Matikainen, P., Furlong, P.M., Sukthankar, R., Hebert, M.: Multi-armed recommendation bandits for selecting state machine policies for robotic systems. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 4545–4551. IEEE (2013)
Mazanek, S., Minas., M.: Business process models as a showcase for syntax-based assistance in diagram editors. In: 12th International Conference on Model Driven Engineering Languages and Systems (MoDELS), volume 5795 of Lecture Notes in Computer Science, pp. 322–336. Springer (2009)
Méndez, D., Graziotin, D., Wagner, S., Seibold, H.: Open science in software engineering. In: Contemporary Empirical Methods in Software Engineering, pp. 477–501. Springer (2020)
Miller, G.A.: WordNet: A lexical database for English. Commun. ACM 38(11), 39–41 (1995)
Article
Google Scholar
MOF 2.5.1. https://www.omg.org/mof/ (2016)
Moha, N., Sen, S., Faucher, C., Barais, O., Jézéquel, J.: Evaluation of Kermeta for solving graph-based problems. Int. J. Softw. Tools Technol. Transfer 12(3–4), 273–285 (2010)
Article
Google Scholar
Muram, F.U., Gallina, B., Rodriguez, L.G.: Preventing omission of key evidence fallacy in process-based argumentations. In: 11th International Conference on the Quality of Information and Communications Technology (QUATIC), pp. 65–73. IEEE Computer Society (2018)
Muslu, K., Brun, Y., Holmes, R., Ernst, M.D., Notkin, D.: Speculative analysis of integrated development environment recommendations. In: 27th Annual ACM SIGPLAN Conf. on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), pp. 669–682. ACM (2012)
Mussbacher, G., Combemale, B., Abrahão, S., Bencomo, N., Burgueño, L., Engels, G., Kienzle, J., Kühne, T., Mosser, S., Sahraoui, H.A., Weyssow, M.: Towards an assessment grid for intelligent modeling assistance. In: 23rd International Conference on Model Driven Engineering Languages and Systems, Companion Proceedings, pp. 48:1–48:10. ACM (2020)
Mussbacher, G., Combemale, B., Kienzle, J., Abrahão, S., Ali, H., Bencomo, N., Búr, M., Burgueño, L., Engels, G., Jeanjean, P., Jézéquel, J., Kühne, T., Mosser, S., Sahraoui, H.A., Syriani, E., Varró, D., Weyssow, M.: Opportunities in intelligent modeling assistance. Softw. Syst. Model. 19(5), 1045–1053 (2020)
Article
Google Scholar
Nassar, N., Radke, H., Arendt, T.: Rule-based repair of EMF models: an automated interactive approach. In: 10th International Conference on Theory and Practice of Model Transformation (ICMT), volume 10374 of Lecture Notes in Computer Science, pp. 171–181. Springer (2017)
Nechypurenko, A., Wuchner, E., White, J., Schmidt, D.C.: Applying model intelligence frameworks for deployment problem in real-time and embedded systems. In: Models in Software Engineering, Workshops and Symposia at MoDELS’06, Reports and Revised Selected Papers, volume 4364 of Lecture Notes in Computer Science, pp. 143–151. Springer (2006)
Neubauer, P., Bill, R., Mayerhofer, T., Wimmer, M.: Automated generation of consistency-achieving model editors. In: IEEE 24th International Conference on Software Analysis, Evolution and Reengineering (SANER), pp. 127–137. IEEE Computer Society (2017)
Nguyen, P.T., Rocco, J.D., Ruscio, D.D., Ochoa, L., Degueule, T., Penta., M.D.: FOCUS: a recommender system for mining API function calls and usage patterns. In: 41st International Conference on Software Engineering (ICSE), pp. 1050–1060. IEEE/ACM (2019)
Nguyen, P.T., Rocco, J.D., Ruscio, D.D., Penta, M.D.: CrossRec: supporting software developers by recommending third-party libraries. J. Syst. Softw. 161, 110460 (17 pages) (2020)
Ning, X., Desrosiers, C., Karypis, G.: A comprehensive survey of neighborhood-based recommendation methods. In: Recommender Systems Handbook, pp. 37–76. Springer (2015)
OCL. http://www.omg.org/spec/OCL/ (2014)
Ohrndorf, M., Pietsch, C., Kelter, U., Kehrer, T.: ReVision: a tool for history-based model repair recommendations. In: 40th International Conference on Software Engineering (ICSE), Companion Proceeedings, pp. 105–108. ACM (2018)
Pati, T., Kolli, S., Hill, J.H.: Proactive modeling: a new model intelligence technique. Softw. Syst. Model. 16(2), 499–521 (2017)
Article
Google Scholar
Paydar, S., Kahani, M.: A semantic web enabled approach to reuse functional requirements models in web engineering. Autom. Softw. Eng. 22(2), 241–288 (2015)
Article
Google Scholar
Paydar, S., Kahani, M.: A semi-automated approach to adapt activity diagrams for new use cases. Inf. Softw. Technol. 57, 543–570 (2015)
Article
Google Scholar
Pazzani, M.J.: A framework for collaborative, content-based and demographic filtering. Artif. Intell. Rev. 13(5–6), 393–408 (1999)
Article
Google Scholar
Pescador, A., de Lara, J.: DSL-maps: from requirements to design of domain-specific languages. In: 31st IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 438–443. ACM (2016)
Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M.: Systematic mapping studies in software engineering. In: 12th International Conference on Evaluation and Assessment in Software Engineering, EASE, Workshops in Computing. BCS (2008)
Petersen, K., Vakkalanka, S., Kuzniarz, L.: Guidelines for conducting systematic mapping studies in software engineering: an update. Inf. Softw. Technol. 64, 1–18 (2015)
Article
Google Scholar
Quijano-Sánchez, L., Cantador, I., Cortés-Cediel, M.E., Gil, O.: Recommender systems for smart cities. Inf. Syst. 92, 101545 (2020)
Article
Google Scholar
QVT 1.3. http://www.omg.org/spec/QVT/ (2016)
Rabbi, F., Lamo, Y., Yu, I.C., Kristensen, L.M.: A diagrammatic approach to model completion. In: 4th Workshop on the Analysis of Model Transformations (AMT@MoDELS), volume 1500 of CEUR Workshop Proceedings, pp. 56–65 (2015)
Rabbi, F., Lamo, Y., Yu, I.C., Kristensen, L.M.: Diagrammatic development of domain specific modelling languages with webdpf. Int. J. Inf. Syst. Model. Des. 7(3), 93–114 (2016)
Article
Google Scholar
Rangiha, M.E., Comuzzi, M., Karakostas, B.: Role and task recommendation and social tagging to enable social business process management. In: BPMDS/EMMSAD@CAiSE, volume 214 of Lecture Notes in Business Information Processing, pp. 68–82. Springer (2015)
Reimann, J., Seifert, M., Aßmann, U.: On the reuse and recommendation of model refactoring specifications. Softw. Syst. Model. 12(3), 579–596 (2013)
Article
Google Scholar
Ricci, F., Rokach, L., Shapira, B. (eds.): Recommender Systems Handbook. Springer (2015)
Robillard, M.P., Walker, R.J., Zimmermann, T.: Recommendation systems for software engineering. IEEE Softw. 27(4), 80–86 (2010)
Article
Google Scholar
Rocco, J.D., Ruscio, D.D., Iovino, L., Pierantonio, A.: Collaborative repositories in model-driven engineering. IEEE Softw. 32(3), 28–34 (2015)
Article
Google Scholar
Rose, L.M., Paige, R.F., Kolovos, D.S., Polack, F.: The Epsilon generation language. In: 4th European Conf. on Model Driven Architecture—Foundations and Applications (ECMDA-FA), volume 5095 of Lecture Notes in Computer Science, pp. 1–16. Springer (2008)
Saini, R., Mussbacher, G., Guo, J.L.C., Kienzle, J.: Teaching modelling literacy: An artificial intelligence approach. In: 22nd ACM/IEEE International Conference on Model Driven Engineering Languages and Systems (MoDELS), Companion Proceedings, pp. 714–719. IEEE (2019)
Sánchez Cuadrado, J., Guerra, E., de Lara, J.: Quick fixing ATL model transformations. In: 18th ACM/IEEE International Conference on Model Driven Engineering Languages and Systems (MoDELS), pp. 146–155. IEEE Computer Society (2015)
Sánchez Cuadrado, J., Guerra, E., de Lara, J.: AnATLyzer: an advanced IDE for ATL model transformations. In: 40th International Conference on Software Engineering (ICSE), Companion Proceedings, pp. 85–88. ACM (2018)
Sánchez Cuadrado, J., Guerra, E., de Lara, J.: Quick fixing ATL transformations with speculative analysis. Softw. Syst. Model. 17(3), 779–813 (2018)
Article
Google Scholar
Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: 10th International Conference on the World-Wide Web (WWW), pp. 285–295 (2001)
Savary-Leblanc, M.: Improving MBSE tools UX with ai-empowered software assistants. In: 22nd ACM/IEEE International Conference on Model Driven Engineering Languages and Systems (MoDELS), Companion Volume, pp. 648–652. IEEE (2019)
Schmidt, D.C.: Guest editor’s introduction: model-driven engineering. Computer 39(2), 25–31 (2006)
Article
Google Scholar
Segura, Á.M., de Lara, J.: Extremo: an eclipse plugin for modelling and meta-modelling assistance. Sci. Comput. Program. 180, 71–80 (2019)
Article
Google Scholar
Segura, Á.M., de Lara, J., Neubauer, P., Wimmer, M.: Automated modelling assistance by integrating heterogeneous information sources. Comput. Lang. Syst. Struct. 53, 90–120 (2018)
Google Scholar
Segura, Á.M., Pescador, A., de Lara, J., Wimmer, M.: An extensible meta-modelling assistant. In: 20th IEEE International Enterprise Distributed Object Computing Conference (EDOC), pp. 1–10. IEEE Computer Society (2016)
Sen, S., Baudry, B., Vangheluwe, H.: Domain-specific model editors with model completion. In: Models in Software Engineering, Workshops and Symposia at MoDELS’07, Reports and Revised Selected Papers, volume 5002 of Lecture Notes in Computer Science, pp. 259–270. Springer (2007)
Sen, S., Baudry, B., Vangheluwe, H.: Towards domain-specific model editors with automatic model completion. Simulation 86(2), 109–126 (2010)
Article
Google Scholar
Simulink. https://www.mathworks.com/products/simulink.html (2020)
Sipio, C.D., Ruscio, D.D., Nguyen, P.T.: Democratizing the development of recommender systems by means of low-code platforms. In: 1st LowCode Workshop (LowCode@MoDELS), pp. 68:1–68:9. ACM (2020)
Steimann, F., Ulke, B.: Generic model assist. In: 16th International Conference on Model-Driven Engineering Languages and Systems (MoDELS), volume 8107 of Lecture Notes in Computer Science, pp. 18–34. Springer (2013)
Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling Framework, 2nd edn. Addison-Wesley Professional (2008)
Stephan, M.: Towards a cognizant virtual software modeling assistant using model clones. In: 41st International Conference on Software Engineering: New Ideas and Emerging Results (NIER@ICSE), pp. 21–24. IEEE/ACM (2019)
Tintarev, N., Masthoff, J.: Evaluating the effectiveness of explanations for recommender systems. User Model. User-Adap. Int. 22(4–5), 399–439 (2012)
Article
Google Scholar
Tisi, M., Mottu, J., Kolovos, D.S., de Lara, J., Guerra, E., Ruscio, D.D., Pierantonio, A., Wimmer, M.: Lowcomote: training the next generation of experts in scalable low-code engineering platforms. In: STAF (Co-Located Events), volume 2405 of CEUR Workshop Proceedings, pp. 73–78. CEUR-WS.org (2019)
Tsunoda, M., Kakimoto, T., Ohsugi, N., Monden, A., Matsumoto, K.: Javawock: A Java class recommender system based on collaborative filtering. In: 17th International Conference on Software Engineering and Knowledge Engineering (SEKE), pp. 491–497 (2005)
UML 2.5.1. https://www.uml.org/ (2017)
Witt, S., Feja, S., Speck, A., Hadler, C.: Business application modeler: A process model validation and verification tool. In: IEEE 22nd International Requirements Engineering Conference (RE), pp. 333–334. IEEE Computer Society (2014)
Wohlin, C.: Guidelines for snowballing in systematic literature studies and a replication in software engineering. In: 18th International Conference on Evaluation and Assessment in Software Engineering, EASE, pp. 38:1–38:10. ACM (2014)
Wohlin, C., Runeson, P., da Mota Silveira Neto, P.A., Engström, E., do Carmo Machado, I., de Almeida, E.S.: On the reliability of mapping studies in software engineering. J. Syst. Softw. 86(10):2594–2610 (2013)