Skip to main content
Log in

Quelle place pour l’imagerie fonctionnelle en 2012 dans le suivi des traitements antiantigiogéniques ?

Functional imaging assessment of anti-angiogenic therapies: what is its place in 2012?

  • Mise au Point / Update
  • Published:
Oncologie

Abstract

Functional imaging, which allows the study of the Brownian motion of water molecules (DW-MRI) or the microcirculation (DCE-MRI, functional CT or contrast-enhanced ultrasound), is now available in clinical practice to assess treatment efficacy in oncologic patients. These techniques are mainly used in animal model studies and in phase I clinical trials. Indeed, they lead to a better understanding of the cascade of events that occur on the vascular bed and in the tissue structure during targeted or non-targeted therapies. DW-MRI provides indirect information about the structure and particularly the cellularity of the tissue. Perfusion imaging gives information about local blood volume, blood flow, and about the transfers between intra- and extravascular spaces. However, the spread of functional imaging in everyday oncology practice as support of a treatment decision still needs additional validation and standardization efforts.

Résumé

Les techniques d’imagerie fonctionnelle, qui étudient les mouvements de l’eau extracellulaire (IRM de diffusion) ou la microcirculation (imagerie fonctionnelle de la microcirculation en IRM, TDM ou échographie), sont actuellement disponibles pour le suivi sous traitement des patients en oncologie. Elles sont pour le moment plutôt employées en précliniques sur des modèles animaux et lors des études de phase I, car elles permettent de faire progresser notre compréhension des phénomènes microcirculatoires et structuraux qui se produisent au cours d’une thérapie ciblée ou non. L’IRM de diffusion permet d’obtenir des informations sur l’architecture et en particulier la cellularité tissulaire. L’imagerie de perfusion renseigne sur les volumes sanguins locaux, sur les vitesses circulatoires et sur l’importance des échanges entre les compartiments intra- et extravasculaires. Leur emploi à large échelle dans une optique d’aide à la décision d’arrêt ou de poursuite d’un traitement nécessite encore plusieurs étapes de validation et de standardisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Références

  1. Afaq A, Andreou A, Koh DM (2010) Diffusion-weighted magnetic resonance imaging for tumour response assessment: why, when and how? Cancer Imaging 10 Spec no A: S179–S188

  2. Aronen HJ, Gazit IE, Louis DN, et al. (1994) Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 191: 41–51

    PubMed  CAS  Google Scholar 

  3. Barbaro B, Vitale R, Valentini V, et al. (2011) Diffusion-weighted magnetic resonance imaging in monitoring rectal cancer response to neoadjuvant chemoradiotherapy. Int J Radiat Oncol Biol Phys [Epub ahead of print]

  4. Biomarkers Definition Working Group (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69: 89–95

    Article  Google Scholar 

  5. Bisdas S, Medov L, Baghi M, et al. (2008) A comparison of tumour perfusion assessed by deconvolution-based analysis of dynamic contrast-enhanced ct and mr imaging in patients with squamous cell carcinoma of the upper aerodigestive tract. Eur Radiol 18: 843–850

    Article  PubMed  Google Scholar 

  6. Brasch R, Pham C, Shames D, et al. (1997) Assessing tumor angiogenesis using macromolecular mr imaging contrast media. J Magn Reson Imaging 7: 68–74

    Article  PubMed  CAS  Google Scholar 

  7. Craciunescu OI, Yoo DS, Cleland E, et al. (2012) Dynamic contrast-enhanced MRI in head and neck cancer: the impact of region of interest selection on the intraand interpatient variability of pharmacokinetic parameters. Int J Radiat Oncol Biol Phys 82(3): e345–e350

    Article  PubMed  Google Scholar 

  8. DeVries AF, Kremser C, Hein PA, et al. (2003) Tumor microcirculation and diffusion predict therapy outcome for primary rectal carcinoma. Int J Radiat Oncol Biol Phys 56: 958–965

    Article  PubMed  Google Scholar 

  9. Dzik-Jurasz A, Domenig C, George M, et al. (2002) Diffusion MRI for prediction of response of rectal cancer to chemoradiation. Lancet 360: 307–308

    Article  PubMed  Google Scholar 

  10. Einarsdottir H, Karlsson M, Wejde J, Bauer HC (2004) Diffusion-weighted MRI of soft tissue tumours. Eur Radiol 14: 959–963

    Article  PubMed  Google Scholar 

  11. Eisa F, Brauweiler R, Hupfer M,, et al. (2012) Dynamic contrast-enhanced micro-CT on mice with mammary carcinoma for the assessment of antiangiogenic therapy response. Eur Radiol 22(4): 900–907

    Article  PubMed  Google Scholar 

  12. Escudier B, Eisen T, Stadler WM, et al. (2007) Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 356: 125–134

    Article  PubMed  CAS  Google Scholar 

  13. Escudier B, Pluzanska A, Koralewski P, et al. (2007) Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet 370: 2103–2111

    Article  PubMed  Google Scholar 

  14. Flaherty KT, Rosen MA, Heitjan DF, et al. (2008) Pilot study of DCE-MRI to predict progression-free survival with sorafenib therapy in renal cell carcinoma. Cancer Biol Ther 7: 496–501

    Article  PubMed  CAS  Google Scholar 

  15. Fournier LS, Oudard S, Thiam R, et al. (2010) Metastatic renal carcinoma: evaluation of antiangiogenic therapy with dynamic contrast-enhanced CT. Radiology 256: 511–518

    Article  PubMed  Google Scholar 

  16. Gauvain KM, McKinstry RC, Mukherjee P, et al. (2001) Evaluating pediatric brain tumor cellularity with diffusion-tensor imaging. AJR Am J Roentgenol 177: 449–454

    PubMed  CAS  Google Scholar 

  17. Gribbestad IS, Nilsen G, Fjosne HE, et al. (1994) Comparative signal intensity measurements in dynamic gadolinium-enhanced MR mammography. J Magn Reson Imaging 4: 477–480

    Article  PubMed  CAS  Google Scholar 

  18. Guibal A, Taillade L, Mule S, et al. (2010) Noninvasive contrast-enhanced us quantitative assessment of tumor microcirculation in a murine model: effect of discontinuing anti-VEGF therapy. Radiology 254: 420–429

    Article  PubMed  Google Scholar 

  19. Guo Y, Cai YQ, Cai ZL, et al. (2002) Differentiation of clinically benign and malignant breast lesions using diffusion-weighted imaging. J Magn Reson Imaging 16: 172–178

    Article  PubMed  Google Scholar 

  20. Harry VN, Semple SI, Gilbert FJ, Parkin DE (2008) Diffusion-weighted magnetic resonance imaging in the early detection of response to chemoradiation in cervical cancer. Gynecol Oncol 111: 213–220

    Article  PubMed  Google Scholar 

  21. Hoff BA, Bhojani MS, Rudge J, et al. (2011) DCE and DW-MRI monitoring of vascular disruption following vegf-trap treatment of a rat glioma model. NMR Biomed [Epub ahead of print]

  22. Jeswani T, Padhani AR (2005) Imaging tumour angiogenesis. Cancer Imaging 5: 131–138

    Article  PubMed  Google Scholar 

  23. Jordan BF, Runquist M, Raghunand N, et al. (2005) Dynamic contrast-enhanced and diffusion MRI show rapid and dramatic changes in tumor microenvironment in response to inhibition of hif-1alpha using px-478. Neoplasia 7: 475–485

    Article  PubMed  CAS  Google Scholar 

  24. Kamel IR, Bluemke DA, Eng J, et al. (2006) The role of functional MR imaging in the assessment of tumor response after chemoembolization in patients with hepatocellular carcinoma. J Vasc Interv Radiol 17: 505–512

    Article  PubMed  Google Scholar 

  25. Kamel IR, Bluemke DA, Ramsey D, et al. (2003) Role of diffusion-weighted imaging in estimating tumor necrosis after chemoembolization of hepatocellular carcinoma. AJR Am J Roentgenol 181: 708–710

    PubMed  Google Scholar 

  26. Kato H, Kanematsu M, Tanaka O, et al. (2009) Head and neck squamous cell carcinoma: usefulness of diffusion-weighted mr imaging in the prediction of a neoadjuvant therapeutic effect. Eur Radiol 19: 103–109

    Article  PubMed  Google Scholar 

  27. Kim SH, Lee JM, Hong SH, et al. (2009) Locally advanced rectal cancer: added value of diffusion-weighted MR imaging in the evaluation of tumor response to neoadjuvant chemo- and radiation therapy. Radiology 253: 116–125

    Article  PubMed  Google Scholar 

  28. Kim T, Murakami T, Takahashi S, et al. (1999) Diffusion-weighted single-shot echoplanar MR imaging for liver disease. AJR Am J Roentgenol 173: 393–398

    PubMed  CAS  Google Scholar 

  29. King AD, Mo FK, Yu KH, et al. (2010) Squamous cell carcinoma of the head and neck: diffusion-weighted mr imaging for prediction and monitoring of treatment response. Eur Radiol 20: 2213–2220

    Article  PubMed  Google Scholar 

  30. Lang P, Wendland MF, Saeed M, et al. (1998) Osteogenic sarcoma: noninvasive in vivo assessment of tumor necrosis with diffusion-weighted MR imaging. Radiology 206: 227–235

    PubMed  CAS  Google Scholar 

  31. Lankester KJ, Taylor JN, Stirling JJ, et al. (2007) Dynamic MRI for imaging tumor microvasculature: comparison of susceptibility and relaxivity techniques in pelvic tumors. J Magn Reson Imaging 25: 796–805

    Article  PubMed  Google Scholar 

  32. Lassau N, Koscielny S, Chami L, et al. (2011) Advanced hepatocellular carcinoma: early evaluation of response to bevacizumab therapy at dynamic contrast-enhanced us with quantification-preliminary results. Radiology 258: 291–300

    Article  PubMed  Google Scholar 

  33. Leach MO, Brindle KM, Evelhoch JL, et al. (2005) The assessment of antiangiogenic and antivascular therapies in early-stage clinical trials using magnetic resonance imaging: issues and recommendations. Br J Cancer 92: 1599–1610

    Article  PubMed  CAS  Google Scholar 

  34. Lu TL, Meuli RA, Marques-Vidal PM, et al. (2010) Interobserver and intraobserver variability of the apparent diffusion coefficient in treated malignant hepatic lesions on a 3.0t machine: measurements in the whole lesion versus in the area with the most restricted diffusion. J Magn Reson Imaging 32: 647–653

    Article  PubMed  Google Scholar 

  35. Motzer RJ, Hutson TE, Tomczak P, et al. (2007) Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med 356: 115–124

    Article  PubMed  CAS  Google Scholar 

  36. Nilsen L, Fangberget A, Geier O, et al. (2010) Diffusion-weighted magnetic resonance imaging for pretreatment prediction and monitoring of treatment response of patients with locally advanced breast cancer undergoing neoadjuvant chemotherapy. Acta Oncol 49: 354–360

    Article  PubMed  Google Scholar 

  37. O’Connor JP, Jackson A, Parker GJ, Jayson GC (2007) DCE-MRI biomarkers in the clinical evaluation of antiangiogenic and vascular disrupting agents. Br J Cancer 96: 189–195

    Article  PubMed  Google Scholar 

  38. Okuma T, Matsuoka T, Yamamoto A, et al. (2009) Assessment of early treatment response after CT-guided radiofrequency ablation of unresectable lung tumours by diffusion-weighted MRI: a pilot study. Br J Radiol 82: 989–994

    Article  PubMed  CAS  Google Scholar 

  39. Parker GJ, Suckling J, Tanner SF, et al. (1997) Probing tumor microvascularity by measurement, analysis and display of contrast agent uptake kinet-ics. J Magn Reson Imaging 7: 564–574

    Article  PubMed  CAS  Google Scholar 

  40. Pham CD, Roberts TP, van Bruggen N, et al. (1998) Magnetic resonance imaging detects suppression of tumor vascular permeability after administration of antibody to vascular endothelial growth factor. Cancer Invest 16: 225–230

    Article  PubMed  CAS  Google Scholar 

  41. Sahin H, Harman M, Cinar C, et al. (2012) Evaluation of treatment response of chemoembolization in hepatocellular carcinoma with diffusion-weighted imaging on 3.0-t mr imaging. J Vasc Interv Radiol 23(2): 241–247

    Article  PubMed  Google Scholar 

  42. Schraml C, Schwenzer NF, Martirosian P, et al. (2009) Diffusion-weighted MRI of advanced hepatocellular carcinoma during sorafenib treatment: initial results. AJR Am J Roentgenol 193: W301–W307

    Article  PubMed  Google Scholar 

  43. Sugahara T, Korogi Y, Kochi M, et al. (1999) Usefulness of diffusion-weighted MRI with echoplanar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging 9: 53–60

    Article  PubMed  CAS  Google Scholar 

  44. Taouli B, Vilgrain V, Dumont E, et al. (2003) Evaluation of liver diffusion isotropy and characterization of focal hepatic lesions with two single-shot echoplanar mr imaging sequences: prospective study in 66 patients. Radiology 226: 71–78

    Article  PubMed  Google Scholar 

  45. Thiam R, Fournier LS, Trinquart L, et al. (2010) Optimizing the size variation threshold for the ct evaluation of response in metastatic renal cell carcinoma treated with sunitinib. Ann Oncol 21: 936–941

    Article  PubMed  CAS  Google Scholar 

  46. Thoeny HC, De Keyzer F, Chen F, et al. (2005) Diffusion-weighted MR imaging in monitoring the effect of a vascular targeting agent on rhabdomyosarcoma in rats. Radiology 234: 756–764

    Article  PubMed  Google Scholar 

  47. Vandecaveye V, Dirix P, De Keyzer F, et al. (2010) Predictive value of diffusion-weighted magnetic resonance imaging during chemoradiotherapy for head and neck squamous cell carcinoma. Eur Radiol 20: 1703–1714

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Lucidarme.

About this article

Cite this article

Lucidarme, O. Quelle place pour l’imagerie fonctionnelle en 2012 dans le suivi des traitements antiantigiogéniques ?. Oncologie 14, 248–256 (2012). https://doi.org/10.1007/s10269-012-2146-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10269-012-2146-9

Keywords

Mots clés

Navigation