Skip to main content
Log in

Mise au point sur la pseudoprogression après chimioradiothérapie dans les glioblastomes

Pseudoprogression after concurrent chemoradiation therapy in glioblastoma

  • Mise au Point / Update
  • Published:
Oncologie

Abstract

Since the publication of the phase III randomized EORTC trial reported by Stupp et al. in 2005, concurrent chemoradiation therapy became the therapeutic standard for glioblastoma. Radiation-induced lesions (radiation necrosis and pseudoprogression) have increased in incidence as a consequence of chemoradiation therapy. These lesions are difficult to distinguish from tumoral progression with standard imaging by MRI. We review here the current data concerning radiation necrosis and pseudoprogression after temozolomide chemotherapy and radiotherapy and discuss their management.

Résumé

Depuis la publication de l’essai randomisé de phase III rapporté par Stupp et al. en 2005, la chimioradiothérapie concomitante (CRT) avec temozolomide est devenue le standard thérapeutique des glioblastomes. L’efficacité de ce traitement a eu pour conséquence l’augmentation d’incidence des lésions radio-induites (radionécrose et pseudoprogression), difficiles à distinguer d’une progression tumorale avérée sur une imagerie standard par résonance magnétique. Nous faisons ici le point sur les données actuelles concernant ces lésions radio-induites après CRT et sur la prise en charge diagnostique et thérapeutique au quotidien.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Références

  1. Brandes AA, Franceschi E, Tosoni A, et al. (2008) MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J Clin Oncol 26(13): 2192–2197

    Article  PubMed  Google Scholar 

  2. Brandsma D, Stalpers L, Taal W, et al. (2008) Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol 9(5): 453–461

    Article  PubMed  Google Scholar 

  3. Brandsma D, van den Bent MJ (2009) Pseudoprogression and pseudoresponse in the treatment of gliomas. Curr Opin Neurol 16(22): 633–638

    Article  Google Scholar 

  4. Cao Y, Tsien CI, Nagesh V, et al. (2006) Survival prediction in high-grade gliomas by MRI perfusion before and during early stage of RT [corrected]. Int J Radiat Oncol Biol Phys 64(3): 876–885

    PubMed  Google Scholar 

  5. Chamberlain MC (2008) Pseudoprogression in glioblastoma. J Clin Oncol 26(26): 4359; author reply 4359–60

    Article  PubMed  Google Scholar 

  6. Chamberlain MC, Glantz MJ, Chalmers L, et al. (2007) Early necrosis following concurrent temodar and radiotherapy in patients with glioblastoma. J Neurooncol 82(1): 81–83

    Article  PubMed  Google Scholar 

  7. Chan YL, Yeung DK, Leung SF, et al. (2003) Diffusion-weighted magnetic resonance imaging in radiation-induced cerebral necrosis. Apparent diffusion coefficient in lesion components. J Comput Assist Tomogr 27(5): 674–680

    Article  PubMed  Google Scholar 

  8. Chen W (2007) Clinical applications of PET in brain tumors. J Nucl Med 48(9): 1468–1481

    Article  PubMed  Google Scholar 

  9. Chuba PJ, Aronin P, Bhambhani K, et al. (1997) Hyperbaric oxygen therapy for radiation-induced brain injury in children. Cancer 80(10): 2005–2012

    Article  CAS  PubMed  Google Scholar 

  10. de Wit MC, de Bruin HG, Eijkenboom W, et al. (2004) Immediate postradiotherapy changes in malignant glioma can mimic tumor progression. Neurology 63(3): 535–537

    PubMed  Google Scholar 

  11. Floyd NS, Woo SY, Teh BS, et al. (2004) Hypofractionated intensity-modulated radiotherapy for primary glioblastoma multiforme. Int J Radiat Oncol Biol Phys 58(3): 721–726

    PubMed  Google Scholar 

  12. Forsyth PA, Kelly PJ, Cascino TL, et al. (1995) Radiation necrosis or glioma recurrence: is computer-assisted stereotactic biopsy useful? J Neurosurg 82(3): 436–444

    Article  CAS  PubMed  Google Scholar 

  13. Giglio P, Gilbert MR (2003) Cerebral radiation necrosis. Neurologist 9(4): 180–188

    Article  PubMed  Google Scholar 

  14. Glantz MJ, Burger PC, Friedman AH, et al. (1994) Treatment of radiation-induced nervous system injury with heparin and warfarin. Neurology 44(11): 2020–2027

    CAS  PubMed  Google Scholar 

  15. Gonzalez J, Kumar AJ, Conrad CA, et al. (2007) Effect of bevacizumab on radiation necrosis of the brain. Int J Radiat Oncol Biol Phys 67(2): 323–326

    CAS  PubMed  Google Scholar 

  16. Griebel M, Friedman HS, Halperin EC, et al. (1991) Reversible neurotoxicity following hyperfractionated radiation therapy of brain stem glioma. Med Pediatr Oncol 19(3): 182–186

    Article  CAS  PubMed  Google Scholar 

  17. Hegi ME, Diserens AC, Gorlia T, et al. (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352(10): 997–1003

    Article  CAS  PubMed  Google Scholar 

  18. Hein PA, Eskey CJ, Dunn JF, et al. (2004) Diffusion-weighted imaging in the follow-up of treated high-grade gliomas: tumor recurrence versus radiation injury. AJNR Am J Neuroradiol 25(2): 201–209

    PubMed  Google Scholar 

  19. Kumar AJ, Leeds NE, Fuller GN, et al. (2000) Malignant gliomas: MR imaging spectrum of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment. Radiology 217(2): 377–384

    CAS  PubMed  Google Scholar 

  20. Le Jeune FP, Dubois F, Blond S, et al. (2006) Sestamibi technetium-99m brain single-photon emission computed tomography to identify recurrent glioma in adults: 201 studies. J Neuro-oncol 77(2): 177–183

    Article  Google Scholar 

  21. Leber KA, Eder HG, Kovac H, et al. (1998) Treatment of cerebral radionecrosis by hyperbaric oxygen therapy. Stereotact Funct Neurosurg 70(Suppl 1): 229–236

    Article  PubMed  Google Scholar 

  22. Levin VA, Yung WK, Bruner J, et al. (2002) Phase II study of accelerated fractionation radiation therapy with carboplatin followed by PCV chemotherapy for the treatment of anaplastic gliomas. Int J Radiat Oncol Biol Phys 53(1): 58–66

    CAS  PubMed  Google Scholar 

  23. Mcdonald DR, Cascino TL, Schold SC, Jr, et al. (1990) Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol 8(7): 1277–1280

    Google Scholar 

  24. McPherson CM, Warnick RE (2004) Results of contemporary surgical management of radiation necrosis using frameless stereotaxis and intraoperative magnetic resonance imaging. J Neurooncol 68(1): 41–47

    Article  PubMed  Google Scholar 

  25. Meyzer C, Dhermain F, Ducreux D, et al. (2010) A case report of pseudoprogression followed by complete remission after proton-beam irradiation for a low-grade glioma in a teenager: the value of dynamic contrast-enhanced MRI. Radiat Oncol 5: 9

    Article  PubMed  Google Scholar 

  26. Nieder C, Andratschke N, Wiedenmann N, et al. (2004) Radiotherapy for high-grade gliomas. Does altered fractionation improve the outcome? Strahlenther Onkol 180(7): 401–407

    Article  PubMed  Google Scholar 

  27. Nordal RA, Nagy A, Pintilie M, et al. (2004) Hypoxia and hypoxia-inducible factor-1 target genes in central nervous system radiation injury: a role for vascular endothelial growth factor. Clin Cancer Res 10(10): 3342–3353

    Article  CAS  PubMed  Google Scholar 

  28. Norden AD, Young GS, Setayesh K, et al. (2008) Bevacizumab for recurrent malignant gliomas: efficacy, toxicity, and patterns of recurrence. Neurology 70(10): 779–787

    Article  CAS  PubMed  Google Scholar 

  29. Peca C, Pacelli R, Elefante A, et al. (2009) Early clinical and neuroradiological worsening after radiotherapy and concomitant temozolomide in patients with glioblastoma: tumor progression or radionecrosis? Clin Neurol Neurosurg 111(4): 331–334

    Article  CAS  PubMed  Google Scholar 

  30. Perry A, Schmidt RE (2006) Cancer therapy-associated CNS neuropathology: an update and review of the literature. Acta Neuropathol 111(3): 197–212

    Article  CAS  PubMed  Google Scholar 

  31. Rachinger W, Goetz C, Popperl G, et al. (2005) Positron emission tomography with O-(2-[18-F]fluoroethyl)-l-tyrosine versus magnetic resonance imaging in the diagnosis of recurrent gliomas. Neurosurgery 57(3): 505–511; discussion 505–11

    Article  PubMed  Google Scholar 

  32. Rock JP, Scarpace L, Hearshen D, et al. (2004) Associations among magnetic resonance spectroscopy, apparent diffusion coefficients, and image-guided histopathology with special attention to radiation necrosis. Neurosurgery 54(5): 1111–1117; discussion 1117–9

    Article  PubMed  Google Scholar 

  33. Ruben JD, Dally M, Bailey M, et al. (2006) Cerebral radiation necrosis: incidence, outcomes, and risk factors with emphasis on radiation parameters and chemotherapy. Int J Radiat Oncol Biol Phys 65(2): 499–508

    PubMed  Google Scholar 

  34. Sanghera P, Perry J, Sahgal A, et al. Pseudoprogression following chemoradiotherapy for glioblastoma multiforme. Can J Neurol Sci 37(1): 36–42

  35. Soussain C, Ricard D, Fike JR, et al. (2009) CNS complications of radiotherapy and chemotherapy. Lancet 374(9701): 1639–1651

    Article  CAS  PubMed  Google Scholar 

  36. Stupp R, Hegi ME, Mason WP, et al. (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10(5): 459–466

    Article  CAS  PubMed  Google Scholar 

  37. Stupp R, Mason WP, van den Bent MJ, et al. (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10): 987–996

    Article  CAS  PubMed  Google Scholar 

  38. Stupp R, Weber DC (2005) The role of radio- and chemotherapy in glioblastoma. Onkologie 28(6–7): 315–317

    Article  PubMed  Google Scholar 

  39. Taal W, Brandsma D, de Bruin HG, et al. (2008) Incidence of early pseudoprogression in a cohort of malignant glioma patients treated with chemoirradiation with temozolomide. Cancer 113(2): 405–410

    Article  CAS  PubMed  Google Scholar 

  40. Terakawa Y, Tsuyuguchi N, Iwai Y, et al. (2008) Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med 49(5): 694–699

    Article  PubMed  Google Scholar 

  41. Torcuator R, Zuniga R, Mohan YS, et al. (2009) Initial experience with bevacizumab treatment for biopsy confirmed cerebral radiation necrosis. J Neurooncol 94(1): 63–68

    Article  CAS  PubMed  Google Scholar 

  42. Tsien C, Galban CJ, Chenevert TL, et al. (2010) Parametric response map as an imaging biomarker to distinguish progression from pseudoprogression in high-grade glioma. J Clin Oncol 28(13): 2293–2299

    Article  CAS  PubMed  Google Scholar 

  43. Tsuyuguchi N, Takami T, Sunada I, et al. (2004) Methionine positron emission tomography for differentiation of recurrent brain tumor and radiation necrosis after stereotactic radiosurgery-in malignant glioma. Ann Nucl Med 18(4): 291–296

    Article  CAS  PubMed  Google Scholar 

  44. Watne K, Hager B, Heier M, et al. (1990) Reversible oedema and necrosis after irradiation of the brain. Diagnostic procedures and clinical manifestations. Acta Oncol 29(7): 891–895

    Article  CAS  PubMed  Google Scholar 

  45. Wen PY, Mcdonald DR, Reardon DA, et al. (2010) Updated response assessment criteria for high-grade gliomas: Response Assessment in Neuro-Oncology Working Group. J Clin Oncol 28(11): 1963–1972

    Article  PubMed  Google Scholar 

  46. Wong CS, Van der Kogel AJ (2004) Mechanisms of radiation injury to the central nervous system: implications for neuroprotection. Mol Interv 4(5): 273–284

    Article  CAS  PubMed  Google Scholar 

  47. Yang I, Aghi MK (2009) New advances that enable identification of glioblastoma recurrence. Nat Rev Clin Oncol 6(11): 648–657

    Article  PubMed  Google Scholar 

  48. Zeng QS, Li CF, Liu H, et al. (2007) Distinction between recurrent glioma and radiation injury using magnetic resonance spectroscopy in combination with diffusion-weighted imaging. Int J Radiat Oncol Biol Phys 68(1): 151–158

    PubMed  Google Scholar 

  49. Zeng QS, Li CF, Zhang K, et al. (2007) Multivoxel 3D proton MR spectroscopy in the distinction of recurrent glioma from radiation injury. J Neurooncol 84(1): 63–69

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Haberer.

About this article

Cite this article

Leysalle, A., Haberer, S. Mise au point sur la pseudoprogression après chimioradiothérapie dans les glioblastomes. Oncologie 12, 559–564 (2010). https://doi.org/10.1007/s10269-010-1927-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10269-010-1927-2

Keywords

Mots clés

Navigation