Skip to main content
Log in

Imagerie par résonance magnétique (IRM) corps entier en cancérologie

Whole body magnetic resonance imaging (MRI) in oncology

  • Original
  • Published:
Oncologie

Résumé

L’IRM est désormais une technique alternative aux autres outils d’imagerie corps entier — incluant scintigraphies, TEP-TDM et TDM. Alternative d’abord par la possibilité désormais offerte de couvrir l’ensemble du corps humain en IRM avec des temps d’imagerie limités; alternative aussi et surtout car des outils d’imagerie fonctionnelle — incluant imagerie de diffusion et de perfusion — peuvent naturellement se combiner à cette large couverture anatomique, alternative enfin de par l’absence d’irradiation induite par I’IRM comparativement aux autres techniques citées plus haut. Nous détaillerons ici les progrès de l’instrumentation IRM qui ont rendu possible cette émergence, avant de citer les premières applications cliniques de ce nouvel outil.

Abstract

MRI now offers an alternative imaging technique that combines functional tools with expanded anatomical coverage. Technical progress in magnetic resonance has reduced acquisition times, allowed perfusion and diffusion imaging to be combined with whole body scanning, and made it possible to perform whole body scanning without irradiation. Here we detail the technical advances in whole body MRI and the emerging clinical applications resulting from this new imaging tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Antoch G, Vogt FM, Freudenberg LS, et al. (2003) Whole-body dual-modality PET/CT and whole-body MRI for tumor staging in oncology. JAMA 290: 3199–206

    Article  PubMed  CAS  Google Scholar 

  2. Ballon D, Watts R, Dyke JP, et al. (2004) Imaging therapeutic response in human bone marrow using rapid whole-body MRI. Magn Reson Med 52: 1234–38

    Article  PubMed  Google Scholar 

  3. Barkhausen J, Quick HH, Lauenstein T, et al. (2001) Whole-body MR imaging in 30 seconds with real-time true FISP and a continuously rolling table platform: feasibility study. Radiology 220: 252–56

    PubMed  CAS  Google Scholar 

  4. Baur A, Stabler A, Bartl R, et al. (1997) MRI gadolinium enhancement of bone marrow: age related changes in normal and in diffuse neoplastic infiltration. Skeletal Radiol 26: 414–18

    Article  PubMed  CAS  Google Scholar 

  5. Bukley DL, Roberts C, Parker GM, et al. (2004) Prostate cancer: evaluation of vascular characteristics with dynamic contrast-enhanced T1-weighted MR imaging: initial experience. Radiology 233: 709–15

    Article  Google Scholar 

  6. Catana C, Wu Y, Judenhofer MS, et al. (2006) Simultaneous acquisition of multislice PET and MR images: initial results with a MR-compatible PET scanner. J Nucl Med 47: 1968–76

    PubMed  Google Scholar 

  7. Dao TH, Rahmouni A, Campana F, et al. (1994) Tumor recurrence versus fibrosis in the irradiated breast: differentiation with dynamic gadolinium-enhanced MR imaging. Radiology 187: 751–55

    Google Scholar 

  8. Eustace S, Tello R, DeCarvalho V, et al. (1997) A comparison of whole-body turbo short tau inversion recovery MR imaging and planar technetium 99m methylene diphosphonate scintigraphy in the evaluation of patients with suspected skeletal metastases. Am J Roentgenol 169: 1655–61

    CAS  Google Scholar 

  9. Firat A, Agildere M, Gencoglu A, et al. (2006) Value of whole-body turbo short Tau inversion recovery magnetic resonance imaging with panoramic table for detecting bone metastases: comparison with 99MTc-methylene diphosphonate scintigraphy. J Comput Assist Tomogr 30: 151–56

    Article  Google Scholar 

  10. Harisinghani MG, Barentsz J, Hahn PF, et al. (2003) Non-invasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 348: 2491–2499

    Article  PubMed  Google Scholar 

  11. Hillengass J, Wasser K, Delorme S, et al. (2007) Lumbar bone marrow microcirculation measurements from dynamic contrast-enhanced MRI is a predictor of event-free survival in progressive multiple myeloma. Clin Cancer Res 13: 475–81

    Article  PubMed  Google Scholar 

  12. Johnston C, Brennan S, Ford S, et al. (2006) Whole body MR imaging: applications in oncology. Eur J Surg Oncol 32: 239–46

    Article  PubMed  CAS  Google Scholar 

  13. Kavanagh E, Smith C, Eustace S (2003) Whole-body turbo STIR MR imaging: controversies and avenues for development. Eur Radiol 13: 2196–205

    Article  PubMed  Google Scholar 

  14. Kellenberger CJ, Miller SF, Khan M, et al. (2004) Initial experience with FSE STIR whole-body MR imaging for staging lymphoma in children. Eur Radiol 14: 1829–41

    Article  PubMed  Google Scholar 

  15. Kruger DG, Riederer SJ, Grimm RC, et al. (2002) Continuously moving table data acquisition method for long FOV contrast-enhanced MRA and whole-body MRI. Magn Reson Med 47: 224–31

    Article  PubMed  Google Scholar 

  16. Kuhl CK, Mielcareck P, Klaschik S, et al. (1999) Dynamic breast MR imaging: are signal intensity time course data useful for differential diagnosis of enhancing lesions? Radiology 211: 101–10

    PubMed  CAS  Google Scholar 

  17. Lauenstein TC, Goehde SC, Herborn CU, et al. (2004) Whole-body MR imaging: evaluation of patients for metastases. Radiology 233: 139–48

    Article  PubMed  Google Scholar 

  18. Lauenstein TC, Goehde SC, Treder W, et al. (2002) Three-dimensional volumetric interpolated breath-hold MR imaging for whole-body tumor staging in less than 15 minutes: a feasibility study. Am J Roentgenol 179: 445–49

    Google Scholar 

  19. Lauenstein TC, Semelka RC (2006) Emerging techniques: whole-body screening and staging with MRI. J Magn Reson Imaging 24: 489–98

    Article  PubMed  Google Scholar 

  20. Lauenstein TC, Semelka RC (2005) Whole-body magnetic resonance imaging. Top Magn Reson Imaging 16: 15–20

    Article  PubMed  Google Scholar 

  21. Luciani A, Dao TH, Lapeyre M, et al. (2004) Simultaneous bilateral breast and high-resolution axillary MRI of patients with breast cancer: preliminary results. Am J Roentgenol 182: 1059–67

    Google Scholar 

  22. Mack MG, Balzer JO, Straub R, et al. (2002) Superparamagnetic iron oxide-enhanced MR imaging of head and neck lymph nodes. Radiology 222: 239–44

    Article  PubMed  Google Scholar 

  23. Mentzel HJ, Kentouche K, Sauner D, et al. (2004) Comparison of whole-body STIR-MRI and 99mTc-methylene-diphosphonate scintigraphy in children with suspected multifocal bone lesions. Eur Radiol 14: 2297–302

    Article  PubMed  Google Scholar 

  24. Rahmouni A, Divine M, Mathieu D, et al. (1993) MR appearance of multiple myeloma of the spine before and after treatment. Am J Roentgenol 160: 1053–57

    CAS  Google Scholar 

  25. Rahmouni A, Montazel JL, Divine M, et al. (2003) Bone marrow with diffuse tumor infiltration in patients with lymphoproliferative diseases: dynamic gadolinium-enhanced MR imaging. Radiology 229: 710–17

    Article  PubMed  Google Scholar 

  26. Roemer PB, Edelstein WA, Hayes CE, et al. (1990) The NMR phased array. Magn Reson Med 16: 192–225

    Article  PubMed  CAS  Google Scholar 

  27. Schmidt GP, Baur-Melnyk A, Herzog P, et al. (2005) High-resolution whole-body MRI tumor staging with the use of parallel imaging versus dual-modality PET-CT: experience on a 32-channel system. Invest Radiol 40: 743–53

    Article  PubMed  Google Scholar 

  28. Schmidt GP, Haug AR, Schoenberg SO, Reiser MF (2006) Whole-body MRI and PET-CT in the management of cancer patients. Eur Radiol 16: 1216–25

    Article  PubMed  Google Scholar 

  29. Schmidt GP, Schoenberg SO, Reiser MF, Baur-Melnyk A (2005) Whole-body MR imaging of bone marrow. Eur J Radiol 55: 33–40

    Article  PubMed  CAS  Google Scholar 

  30. Sorgho-Lougue LC, Luciani A, Kobeiter H, et al. (2006) Adenocarcinomas of unknown primary (ACUP) of the mediastinum mimicking lymphoma: CT findings at diagnosis and follow-up. Eur J Radiol 59: 42–48

    Article  PubMed  Google Scholar 

  31. Takahara T, Imai Y, Yamashita T, et al. (2004) Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high-resolution 3D display. Radiat Med 22: 275–82

    PubMed  Google Scholar 

  32. Vande Berg BC, Lecouvet FE, Michaux L, et al. (1996) Stage I multiple myeloma: value of MR imaging of the bone marrow in the determination of prognosis. Radiology 201: 243–46

    CAS  Google Scholar 

  33. Van der Woude HJ, Bloem JL, Verstraete KL, et al. (1995) Osteosarcoma and Ewing’s sarcoma after neoadjuvant chemotherapy: value of dynamic MR imaging in detecting viable tumor before surgery. Am J Roentgenol 165: 593–98

    Google Scholar 

  34. Walker R, Barlogie B, Haessler J, et al. (2007) Magnetic resonance imaging in multiple myeloma: diagnostic and clinical implications. J Clin Oncol [Epub ahead of print as 10.1200/JCO.2006.08.5803]

  35. Walker R, Kessar P, Blanchard R, et al. (2000) Turbo STIR MRI as a whole-body screening tool for metastases in patients with breast carcinoma: preliminary clinical experience. J Magn Reson Imaging 11: 343–50

    Article  PubMed  CAS  Google Scholar 

  36. Yasumoto M, Nonomura Y, Yoshimura R, et al. (2002) MR detection of iliac bone marrow involvement by malignant lymphoma with various MR sequences including diffusion-weighted echo-planar imaging. Skeletal Radiol 31: 263–69

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. -F. Deux.

About this article

Cite this article

Lin, C., Luciani, A., Haioun, C. et al. Imagerie par résonance magnétique (IRM) corps entier en cancérologie. Oncologie 9, 286–293 (2007). https://doi.org/10.1007/s10269-007-0640-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10269-007-0640-2

Mots clés

Keywords

Navigation