Skip to main content
Log in

Peri-implantitis with a potential axis to brain inflammation: an inferential review

  • Review Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

Peri-implantitis (PI) is a chronic, inflammatory, and infectious disease which affects dental implants and has certain similarities to periodontitis (PD). Evidence has shown that PD may be related to several types of systemic disorders, such as diabetes and insulin resistance, cardiovascular diseases, respiratory tract infections, adverse pregnancy outcomes, and neurological disorders. Furthermore, some types of bacteria in PD can also be found in PI, leading to certain similarities in the immunoinflammatory responses in the host. This review aims to discuss the possible connection between PI and neuroinflammation, using information based on studies about periodontal disorders, a topic whose connection with systemic alterations has been gaining the interest of the scientific community. Literature concerning PI, PD, and systemic disorders, such as neuroinflammation, brain inflammation, and neurological disorder, was searched in the PubMed database using different keyword combinations. All studies found were included in this narrative review. No filters were used. Eligible studies were analyzed and reviewed carefully. This study found similarities between PI and PD development, maintenance, and in the bacterial agents located around the teeth (periodontitis) or dental implants (peri-implantitis). Through the cardiovascular system, these pathologies may also affect blood-brain barrier permeability. Furthermore, scientific evidence has suggested that microorganisms from PI (as in PD) can be recognized by trigeminal fiber endings and start inflammatory responses into the trigeminal ganglion. In addition, bacteria can traverse from the mouth to the brain through the lymphatic system. Consequently, the immune system increases inflammatory mediators in the brain, affecting the homeostasis of the nervous tissue and vice-versa. Based on the interrelation of microbiological, inflammatory, and immunological findings between PD and PI, it is possible to infer that immunoinflammatory changes observed in PD can imply systemic changes in PI. This, as discussed, could lead to the development or intensification of neuroinflammatory changes, contributing to neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Imagens adapted from BioRender: Scientific Image and Illustration Software, 2023)

Fig. 2
Fig. 3

(The images were adapted from Sansores-España et al. [13], and BioRender: Scientific Image and Illustration Software, 2023)

Similar content being viewed by others

Abbreviations

PI:

Peri-implantiti

PT:

Periodontitis

PD:

Periodontal disease

TRP:

Toll-Like Receptors

IL-1β:

Interleukin-1β

IL-6:

Interleukin-6

IL-17:

Interleukin-17

TNF-α:

Tumor necrosis factor alpha

BBB:

Blood–brain barrier

MMP-2:

Matrix metalloproteinases 2

MMP-9:

Matrix metalloproteinases 9

rRNA:

Ribosomal ribonucleic acid

TRL4:

Toll-like receptor 4

TRP:

Transient Receptor Potential

NF-κB:

Factor nuclear kappa B

ROS:

Reactive oxygen species

Ca:

Calcium

TLRs:

Toll-like receptors

LPS:

Lipopolysaccharide

TRPV1:

Transient receptor potential cation channel V1

References

  1. Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL Jr. Microbial complexes in subgingival plaque. J Clin Periodontol. 1998;25(2):134–44. https://doi.org/10.1111/j.1600-051X.1998.tb02419.x.

    Article  CAS  PubMed  Google Scholar 

  2. Paster BJ, Boches SK, Galvin JL, Ericson RE, Lau CN, Levanos VA, Sahasrabudhe A, Dewhirst FE. Bacterial diversity in human subgingival plaque. J Bacteriol. 2001;183(12):3770–83. https://doi.org/10.1128/JB.183.12.3770-3783.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bui FQ, Almeida-da-Silva CLC, Huynh B, Trinh A, Liu J, Woodward J, Asadi H, Ojcius DM. Association between periodontal pathogens and systemic disease. Biomedical J. 2019;42(1):27–35. https://doi.org/10.1016/j.bj.2018.12.001.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Belstrøm D, Fiehn NE, Nielsen CH, Kirkby N, Twetman S, Klepac-Ceraj V, Paster BJ, Holmstrup P. Differences in bacterial saliva profile between periodontitis patients and a control cohort. J Clin Periodontol. 2014;41(2):104–12. https://doi.org/10.1111/jcpe.12190.

    Article  CAS  PubMed  Google Scholar 

  5. Kumar S. Evidence-based update on diagnosis and management of gingivitis and periodontitis. Dent Clin North Am. 2019;63(1):69–81. https://doi.org/10.1016/j.cden.2018.08.005.

    Article  PubMed  Google Scholar 

  6. Figueiredo LC, Freitas Figueiredo N, da Cruz DF, Baccelli GT, Sarachini GE, Bueno MR, Feres M, Bueno-Silva B. Propolis, aloe vera, green tea, cranberry, calendula, myrrha and salvia properties against periodontal microorganisms. Microorganisms. 2022;10(11):2172. https://doi.org/10.3390/microorganisms10112172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ray RR. Periodontitis: an oral disease with severe consequences. Appl Biochem Biotechnol. 2023;195(1):17–32. https://doi.org/10.1007/s12010-022-04127-9.

    Article  CAS  PubMed  Google Scholar 

  8. Zambon JJ. Periodontal diseases: microbial factors. Ann Periodontol. 1996;1(1):879–925. https://doi.org/10.1902/annals.1996.1.1.879.

    Article  CAS  PubMed  Google Scholar 

  9. Sedghi LM, Bacino M, Kapila YL. Periodontal disease: the good, the bad, and the unknown. Front Cell Infect Microbiol. 2021;11:766944. https://doi.org/10.3389/fcimb.2021.766944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sudhakara P, Gupta A, Bhardwaj A, Wilson A. Oral dysbiotic communities and their implications in systemic diseases. Dentistry journal. 2018;6(2):10. https://doi.org/10.3390/dj6020010.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kim J, Amar S. Periodontal disease and systemic conditions: a bidirectional relationship. Odontology. 2006;94(1):10–21. https://doi.org/10.1007/s10266-006-0060-6.

    Article  PubMed  PubMed Central  Google Scholar 

  12. de Mello-Neto JM, Ervolino E, Elangovan G, Toro LF, Lee J, Gustafsson A, Figueredo CMDS. The resolution of periodontal inflammation promotes changes in cytokine expression in the intestine and gingival tissues of aged rats with DSS-induced colitis. J Clin Med. 2023;12(13):4326. https://doi.org/10.3390/jcm12134326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sansores-España LD, Melgar-Rodríguez S, Olivares-Sagredo K, Cafferata EA, Martínez-Aguilar VM, Vernal R, Paula-Lima AC, Díaz-Zúñiga J. Oral- gut-brain axis in experimental models of periodontitis: associating gut dysbiosis with neurodegenerative diseases. Front Aging. 2021;2781582. https://doi.org/10.3389/fragi.2021.781582.

  14. Berglundh T, Gotfredsen K, Zitzmann NU, Lang NP, Lindhe J. Spontaneous progression of ligature induced peri-implantitis at implants with different surface roughness: an experimental study in dogs. Clin Oral Implant Res. 2007;18(5):655–61. https://doi.org/10.1111/j.1600-0501.2007.01397.x.

    Article  CAS  Google Scholar 

  15. Berglundh T, Zitzmann NU, Donati M. Are peri-implantitis lesions different from periodontitis lesions? J Clin Periodontol. 2011;38(Suppl 11):188–202. https://doi.org/10.1111/j.1600-051X.2010.01672.x.

    Article  PubMed  Google Scholar 

  16. Gualini F, Berglundh T. Immunohistochemical characteristics of inflammatory lesions at implants. J Clin Periodontol. 2003;30(1):14–8. https://doi.org/10.1034/j.1600-051x.2003.300103.x.

    Article  PubMed  Google Scholar 

  17. Carcuac O, Abrahamsson I, Albouy JP, Linder E, Larsson L, Berglundh T. Experimental periodontitis and peri-implantitis in dogs. Clin Oral Implant Res. 2013;24(4):363–71. https://doi.org/10.1111/clr.12067.

    Article  Google Scholar 

  18. Berglundh T, Lindhe J, Marinello C, Ericsson I, Liljenberg B. Soft tissue reaction to de novo plaque formation on implants and teeth. An experimental study in the dog. Clin Oral Implan Res. 1992;3(1):1–8. https://doi.org/10.1034/j.1600-0501.1992.030101.x.

  19. Aisenberg MS. Histology and physiology of the supporting structures. J Am Dental Assoc. 1952, 1939;44(6):628–32. https://doi.org/10.14219/jada.archive.1952.0111.

  20. Mavrogenis AF, Dimitriou R, Parvizi J, Babis GC. Biology of implant osseointegration. J Musculoskelet Neuronal Interact. 2009;9(2):61–71.

    CAS  PubMed  Google Scholar 

  21. Wang Y, Zhang Y, Miron RJ. Health, maintenance, and recovery of soft tissues around implants. Clin Implant Dent Relat Res. 2016;18(3):618–34. https://doi.org/10.1111/cid.12343.

    Article  PubMed  Google Scholar 

  22. Pihlstrom BL, Michalowicz BS, Johnson NW. Periodontal diseases. Lancet (London, England). 2005;366(9499):1809–20. https://doi.org/10.1016/S0140-6736(05)67728-8.

    Article  PubMed  Google Scholar 

  23. Pan W, Wang Q, Chen Q. The cytokine network involved in the host immune response to periodontitis. Int J Oral Sci. 2019;11(3):30. https://doi.org/10.1038/s41368-019-0064-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kinane DF, Stathopoulou PG, Papapanou PN. Periodontal diseases. Nat Rev Dis Primers. 2017;3:17038. https://doi.org/10.1038/nrdp.2017.38.

  25. Smith M, Seymour GJ, Cullinan MP. Histopathological features of chronic and aggressive periodontitis. Periodontol. 2010;2000(53):45–54. https://doi.org/10.1111/j.1600-0757.2010.00354.x.

    Article  Google Scholar 

  26. Han N, Li X, Du J, Xu J, Guo L, Liu Y. The impacts of oral and gut microbiota on alveolar bone loss in periodontitis. J Periodontal Res. 2023;58(6):1139–47. https://doi.org/10.1111/jre.13168.

    Article  CAS  PubMed  Google Scholar 

  27. Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, Yu WH, Lakshmanan A, Wade WG. The human oral microbiome. J Bacteriol. 2010;192(19):5002–17. https://doi.org/10.1128/JB.00542-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hajishengallis G, Chavakis T. Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities. Nat Rev Immunol. 2021;21(7):426–40. https://doi.org/10.1038/s41577-020-00488-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gazil V, Bandiaky ON, Renard E, Idiri K, Struillou X, Soueidan A. Current data on oral peri-implant and periodontal microbiota and its pathological changes: a systematic review. Microorganisms. 2022;10(12):2466. https://doi.org/10.3390/microorganisms10122466.

  30. Abdulkareem AA, Al-Taweel FB, Al-Sharqi AJB, Gul SS, Sha A, Chapple ILC. Current concepts in the pathogenesis of periodontitis: from symbiosis to dysbiosis. J Oral Microbiol. 2023;15(1):2197779. https://doi.org/10.1080/20002297.2023.2197779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Salvi GE, Stähli A, Imber JC, Sculean A, Roccuzzo A. Physiopathology of peri-implant diseases. Clin Implant Dent Relat Res. 2022. https://doi.org/10.1111/cid.13167.

    Article  PubMed  Google Scholar 

  32. Schwarz F, Sculean A, Engebretson SP, Becker J, Sager M. Animal models for peri-implant mucositis and peri-implantitis. Periodontology 2000. 2015;68(1):168–81. https://doi.org/10.1111/prd.12064.

  33. Heitz-Mayfield LJA, Salvi GE. Peri-implant mucositis. J Periodontol. 2018;89(Suppl 1):S257–66. https://doi.org/10.1002/JPER.16-0488.

    Article  PubMed  Google Scholar 

  34. Loe H, Theilade E, Jensen SB. Experimental gingivitis in man. J Periodontol. 1965;36:177–87. https://doi.org/10.1902/jop.1965.36.3.177.

    Article  CAS  Google Scholar 

  35. Salvi GE, Aglietta M, Eick S, Sculean A, Lang NP, Ramseier CA. Reversibility of experimental peri-implant mucositis compared with experimental gingivitis in humans. Clin Oral Implant Res. 2012;23(2):182–90. https://doi.org/10.1111/j.1600-0501.2011.02220.x.

    Article  Google Scholar 

  36. Jemt T, Eriksson J. Implant failures before and after peri-implantitis surgery: a retrospective study on 207 consecutively treated patients. Clin Implant Dent Relat Res. 2020;22(5):567–73. https://doi.org/10.1111/cid.12931.

    Article  PubMed  Google Scholar 

  37. Lindhe J, Berglundh T, Ericsson I, Liljenberg B, Marinello C. Experimental breakdown of peri-implant and periodontal tissues. A study in the beagle dog. Clin Oral Implan Res. 1992;3(1):9–16. https://doi.org/10.1034/j.1600-0501.1992.030102.x.

  38. Lang NP, Brägger U, Walther D, Beamer B, Kornman KS. Ligature- induced peri-implant infection in cynomolgus monkeys. I. Clinical and radiographic findings. Clin Oral Implan Res. 1993;4(1):2–11. https://doi.org/10.1034/j.1600-0501.1993.040101.x.

  39. Zitzmann NU, Berglundh T, Ericsson I, Lindhe J. Spontaneous progression of experimentally induced periimplantitis. J Clin Periodontol. 2004;31(10):845–9. https://doi.org/10.1111/j.1600-051X.2004.00567.x.

    Article  CAS  PubMed  Google Scholar 

  40. Albouy JP, Abrahamsson I, Persson LG, Berglundh T. Spontaneous progression of ligatured induced peri-implantitis at implants with different surface characteristics. An experimental study in dogs II: histological observations. Clin Oral Implan Res. 2009;20(4):366–71. https://doi.org/10.1111/j.1600-0501.2008.01645.x.

  41. Boldeanu LC, Boariu M, Rusu D, Vaduva A, Roman A, Surlin P, Martu I, Dragoi R, Popa-Wagner A, Stratul SI. Histomorphometrical and CBCT evaluation of tissue loss progression induced by consecutive, alternate ligatures in experimental peri-implantitis in a dog model: a pilot study. J Clin Med. 2022;11(20):6188. https://doi.org/10.3390/jcm11206188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang J, Yu C, Zhang X, Chen H, Dong J, Lu W, Song Z, Zhou W. Porphyromonas gingivalis lipopolysaccharide induces cognitive dysfunction, mediated by neuronal inflammation via activation of the TLR4 signaling pathway in C57BL/6 mice. J Neuroinflammation. 2018;15(1):37. https://doi.org/10.1186/s12974-017-1052-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Takamori Y, Atsuta I, Nakamura H, Sawase T, Koyano K, Hara Y. Histopathological comparison of the onset of peri-implantitis and periodontitis in rats. Clin Oral Implant Res. 2017;28(2):163–70. https://doi.org/10.1111/clr.12777.

    Article  Google Scholar 

  44. Kozlovsky A, Tal H, Laufer BZ, Leshem R, Rohrer MD, Weinreb M, Artzi Z. Impact of implant overloading on the peri-implant bone in inflamed and non- inflamed peri-implant mucosa. Clin Oral Implant Res. 2007;18(5):601–10. https://doi.org/10.1111/j.1600-0501.2007.01374.x.

    Article  Google Scholar 

  45. Lima LA, Bosshardt DD, Chambrone L, Araújo MG, Lang NP. Excessive occlusal load on chemically modified and moderately rough titanium implants restored with cantilever reconstructions. An experimental study in dogs. Clin Oral Implan Res. 2019;30(11):1142–54. https://doi.org/10.1111/clr.13539.

  46. Apatzidou D, Lappin DF, Hamilton G, Papadopoulos CA, Konstantinidis A, Riggio MP. Microbiome of peri-implantitis affected and healthy dental sites in patients with a history of chronic periodontitis. Arch Oral Biol. 2017;83:145–52. https://doi.org/10.1016/j.archoralbio.2017.07.007.

    Article  CAS  PubMed  Google Scholar 

  47. Sanz-Martin I, Doolittle-Hall J, Teles RP, Patel M, Belibasakis GN, Hämmerle CHF, Jung RE, Teles FRF. Exploring the microbiome of healthy and diseased peri-implant sites using Illumina sequencing. J Clin Periodontol. 2017;44(12):1274–84. https://doi.org/10.1111/jcpe.12788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yu XL, Chan Y, Zhuang L, Lai HC, Lang NP, Keung Leung W, Watt RM. Intra-oral single-site comparisons of periodontal and peri-implant microbiota in health and disease. Clin Oral Implant Res. 2019;30(8):760–76. https://doi.org/10.1111/clr.13459.

    Article  Google Scholar 

  49. Wilson M. Bacteriology of humans: an ecological perspective. Hoboken, NJ: Blackwell Publishing Ltd.; 2008.

    Google Scholar 

  50. Marsh PD, Zaura E. Dental biofilm: ecological interactions in health and disease. J Clin Periodontol. 2017;44(Suppl 18):S12–22. https://doi.org/10.1111/jcpe.12679.

    Article  PubMed  Google Scholar 

  51. Willis JR, Gabaldón T. The human oral microbiome in health and disease: from sequences to ecosystems. Microorganisms. 2020;8(2):308. https://doi.org/10.3390/microorganisms8020308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kozak M, Pawlik A. The role of the oral microbiome in the development of diseases. Int J Mol Sci. 2023;24(6):5231. https://doi.org/10.3390/ijms24065231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Leonhardt A, Renvert S, Dahlén G. Microbial findings at failing implants. Clin Oral Implant Res. 1999;10(5):339–45. https://doi.org/10.1034/j.1600-0501.1999.100501.x.

    Article  CAS  Google Scholar 

  54. Botero JE, González AM, Mercado RA, Olave G, Contreras A. Subgingival microbiota in peri-implant mucosa lesions and adjacent teeth in partially edentulous patients. J Periodontol. 2005;76(9):1490–5. https://doi.org/10.1902/jop.2005.76.9.1490.

    Article  PubMed  Google Scholar 

  55. Shibli JA, Melo L, Ferrari DS, Figueiredo LC, Faveri M, Feres M. Composition of supra- and subgingival biofilm of subjects with healthy and diseased implants. Clin Oral Implant Res. 2008;19(10):975–82. https://doi.org/10.1111/j.1600-0501.2008.01566.x.

    Article  Google Scholar 

  56. Maruyama N, Maruyama F, Takeuchi Y, Aikawa C, Izumi Y, Nakagawa I. Intraindividual variation in core microbiota in peri-implantitis and periodontitis. Sci Rep. 2014;4:6602. https://doi.org/10.1038/srep06602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ata-Ali J, Flichy-Fernández AJ, Alegre-Domingo T, Ata-Ali F, Palacio J, Peñarrocha-Diago M. Clinical, microbiological, and immunological aspects of healthy versus peri-implantitis tissue in full arch reconstruction patients: a prospective cross-sectional study. BMC Oral Health. 2015;15:43. https://doi.org/10.1186/s12903-015-0031-9.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Wang HL, Garaicoa-Pazmino C, Collins A, Ong HS, Chudri R, Giannobile WV. Protein biomarkers and microbial profiles in peri-implantitis. Clin Oral Implant Res. 2016;27(9):1129–36. https://doi.org/10.1111/clr.12708.

    Article  CAS  Google Scholar 

  59. de Waal YC, Eijsbouts HV, Winkel EG, van Winkelhoff AJ. Microbial characteristics of peri-implantitis: a case-control study. J Periodontol. 2017;88(2):209–17. https://doi.org/10.1902/jop.2016.160231.

    Article  PubMed  Google Scholar 

  60. Rajasekar A, Varghese SS. Bacterial profile associated with peri-implantitis: a systematic review. J Long Term Eff Med Implants. 2023;33(3):9–20. https://doi.org/10.1615/JLongTermEffMedImplants.2022044320.

    Article  PubMed  Google Scholar 

  61. Freitag L, Spinell T, Kröger A, Würfl G, Lauseker M, Hickel R, Kebschull M. Dental implant material related changes in molecular signatures in peri- implantitis—a systematic review and integrative analysis of omics in-vitro studies. Dental Mater. 2023;39(1):101–13. https://doi.org/10.1016/j.dental.2022.11.022.

    Article  CAS  Google Scholar 

  62. Ilievski V, Zuchowska PK, Green SJ, Toth PT, Ragozzino ME, Le K, Aljewari HW, O’Brien-Simpson NM, Reynolds EC, Watanabe K. Chronic oral application of a periodontal pathogen results in brain inflammation, buidegeneration and amyloid beta production in wild type mice. PLoS ONE. 2018;13(10):e0204941. https://doi.org/10.1371/journal.pone.0204941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Antoniraj MG, Devi KP, Berindan-Neagoe I, Nabavi SF, Khayat Kashani HR, Aghaabdollahian S, Afkhami F, Jeandet P, Lorigooini Z, Khayatkashani M, Nabavi SM. Oral microbiota in cancer: could the bad guy turn good with application of polyphenols? Expert Rev Mol Med. 2022;25:e1. https://doi.org/10.1017/erm.2022.39.

    Article  CAS  PubMed  Google Scholar 

  64. Ball J, Darby I. Mental health and periodontal and peri-implant diseases. Periodontology 2000. 2022;90(1):106–24. https://doi.org/10.1111/prd.12452.

  65. Chew RJJ, Lu JX, Sim YF, Yeo ABK. Rodent peri-implantitis models: a systematic review and meta-analysis of morphological changes. J Periodontal Implant Sci. 2022;52(6):479–95. https://doi.org/10.5051/jpis.2200900045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pisani F, Pisani V, Arcangeli F, Harding A, Singhrao SK. The mechanistic pathways of periodontal pathogens entering the brain: the potential role of Treponema denticola in tracing Alzheimer’s disease pathology. Int J Environ Res Public Health. 2022;19(15):9386. https://doi.org/10.3390/ijerph19159386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Guan ZW, Xu TQ, Shen S, Li X, Feng Q. Sichuan da xue xue bao. Yi xue ban = Journal of Sichuan University. Med Sci Edition. 2023;54(1), 39–48. https://doi.org/10.12182/20230160501.

  68. Silveira MPM, Campaner LM, Bottino MA, Nishioka RS, Borges ALS, Tribst JPM. Influence of the dental implant number and load direction on stress distribution in a 3-unit implant-supported fixed dental prosthesis. Dental Med Probl. 2021;58(1):69–74. https://doi.org/10.17219/dmp/130847.

  69. Tribst JPM, Dal Piva AMO, Blom EJ, Kleverlaan CJ, Feilzer AJ. Dental biomechanics of root-analog implants in different bone types. J Prosthet Dent. 2022;S0022–3913(22)00648–5. Advance online publication. https://doi.org/10.1016/j.prosdent.2022.10.005.

  70. Dominy SS, Lynch C, Ermini F, Benedyk M, Marczyk A, Konradi A, Nguyen M, Haditsch U, Raha D, Griffin C, Holsinger LJ, Arastu-Kapur S, Kaba S, Lee A, Ryder MI, Potempa B, Mydel P, Hellvard A, Adamowicz K, Hasturk H, et al. Porphyromonas gingivalis in Alzheimer’s disease brains: Evidence for disease causation and treatment with small-molecule inhibitors. Sci Adv. 2019;5(1):eaau3333. https://doi.org/10.1126/sciadv.aau3333.

  71. Díaz-Zúñiga J, More J, Melgar-Rodríguez S, Jiménez-Unión M, VillalobosOrchard F, Muñoz-Manríquez C, Monasterio G, Valdés JL, Vernal R, PaulaLima A. Alzheimer’s disease-like pathology triggered by Porphyromonas gingivalis in wild type rats is serotype dependent. Front Immunol. 2020;11:588036. https://doi.org/10.3389/fimmu.2020.588036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kantarci A, Hasturk H, Van Dyke TE. Animal models for periodontal regeneration and peri-implant responses. Periodontology 2000. 2015;68(1):66–82. https://doi.org/10.1111/prd.12052.

  73. Hajishengallis G, Lambris JD. Microbial manipulation of receptor crosstalk in innate immunity. Nat Rev Immunol. 2011;11:187–200. https://doi.org/10.1038/nri2918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chen Y, Wang X, Ng C, Tsao S, Leung W. Toll-like receptors 1/2/4/6 and nucleotide-binding oligomerization domain-like receptor 2 are key damage-associated molecular patterns sensors on periodontal resident cells. Appl Sci. 2021;11:4724. https://doi.org/10.3390/app11114724.

    Article  CAS  Google Scholar 

  75. Li Q, Ouyang X, Lin J. The impact of periodontitis on vascular endothelial dysfunction. Front Cell Infect Microbiol. 2022;12:998313. https://doi.org/10.3389/fcimb.2022.998313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lei S, Li J, Yu J, Li F, Pan Y, Chen X, Ma C, Zhao W, Tang X. Porphyromonas gingivalis bacteremia increases the permeability of the blood-brain barrier via the Mfsd2a/Caveolin-1 mediated transcytosis pathway. Int J Oral Sci. 2023;15(1):3. https://doi.org/10.1038/s41368-022-00215-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Schenkein HA, Loos BG. Inflammatory mechanisms linking periodontal diseases to cardiovascular diseases. J Clin Periodontol. 2013;40:S51–69. https://doi.org/10.1111/jcpe.12060.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Tada H, Sugawara S, Nemoto E, Takahashi N, Imamura T, Potempa J, Travis J, Shimauchi H, Takada H. Proteolysis of CD14 on human gingival fibroblasts by arginine-specific cysteine proteinases from Porphyromonas gingivalis leading to down-regulation of lipopolysaccharide-induced interleukin-8 production. Infect Immun. 2002;70(6):3304–7. https://doi.org/10.1128/IAI.70.6.3304-3307.2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. O’Brien-Simpson NM, Pathirana RD, Walker GD, Reynolds EC. Porphyromonas gingivalis RgpA-Kgp proteinase-adhesin complexes penetrate gingival tissue and induce proinflammatory cytokines or apoptosis in a concentration-dependent manner. Infect Immun. 2009;77(3):1246–61. https://doi.org/10.1128/IAI.01038-08.

    Article  CAS  PubMed  Google Scholar 

  80. Wilensky A, Polak D, Houri-Haddad Y, Shapira L. The role of RgpA in the pathogenicity of Porphyromonas gingivalis in the murine periodontitis model. J Clin Periodontol. 2013;40(10):924–32. https://doi.org/10.1111/jcpe.12139.

    Article  CAS  PubMed  Google Scholar 

  81. Patibandla PK, Tyagi N, Dean WL, Tyagi SC, Lominadze D. Fibrinogen induces alterations of endothelial cell tight junction proteins. J Cell Physiol. 2010;221:195–203. https://doi.org/10.1002/jcp.21845.

    Article  CAS  Google Scholar 

  82. Leite AR, Borges-Canha M, Cardoso R, Neves JS, Castro-Ferreira R, Leite-Moreira A. Novel biomarkers for evaluation of endothelial dysfunction. Angiology. 2020;71:397–410. https://doi.org/10.1177/0003319720903586.

    Article  CAS  PubMed  Google Scholar 

  83. Zhou J, Windsor LJ. Porphyromonas gingivalis affects host collagen degradation by affecting expression, activation, and inhibition of matrix metalloproteinases. J Periodontal Res. 2006;41(1):47–54. https://doi.org/10.1111/j.1600-0765.2005.00835.x.

    Article  CAS  PubMed  Google Scholar 

  84. Konradt C, Hunter CA. Pathogen interactions with endothelial cells and the induction of innate and adaptive immunity. Eur J Immunol. 2018;48(10):1607–20. https://doi.org/10.1002/eji.201646789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rochfort KD, Collins LE, Murphy RP, Cummins PM. Downregulation of blood-brain barrier phenotype by proinflammatory cytokines involves NADPH oxidase-dependent ROS generation: consequences for interendothelial adherens and tight junctions. PLoS ONE. 2014;9(7):e101815. https://doi.org/10.1371/journal.pone.0101815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bowman GL, Dayon L, Kirkland R, Wojcik J, Peyratout G, Severin IC, Henry H, Oikonomidi A, Migliavacca E, Bacher M, Popp J. Blood-brain barrier breakdown, neuroinflammation, and cognitive decline in older adults. Alzheimer’s Dementia. 2018;14(12):1640–50. https://doi.org/10.1016/j.jalz.2018.06.2857.

    Article  PubMed  Google Scholar 

  87. Perry VH, Nicoll JA, Holmes C. Microglia in neurodegenerative disease. Nat Rev Neurol. 2010;6(4):193–201. https://doi.org/10.1038/nrneurol.2010.17.

    Article  PubMed  Google Scholar 

  88. Frost GR, Li YM. The role of astrocytes in amyloid production and Alzheimer’s disease. Open Biol. 2017;7(12):170228. https://doi.org/10.1098/rsob.170228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Foschi F, Izard J, Sasaki H, Sambri V, Prati C, Müller R, Stashenko P. Treponema denticola in disseminating endodontic infections. J Dent Res. 2006;85(8):761–5. https://doi.org/10.1177/154405910608500814.

    Article  CAS  PubMed  Google Scholar 

  90. Rupf S, Kannengiesser S, Merte K, Pfister W, Sigusch B, Eschrich K. Comparison of profiles of key periodontal pathogens in periodontium and endodontium. Endod Dent Traumatol. 2000;16(6):269–75. https://doi.org/10.1034/j.1600-9657.2000.016006269.x.

    Article  CAS  PubMed  Google Scholar 

  91. Riviere GR, Riviere KH, Smith KS. Molecular and immunological evidence of oral Treponema in the human brain and their association with Alzheimer’s disease. Oralmicrobiol Immunol. 2002;17(2):113–8. https://doi.org/10.1046/j.0902-0055.2001.00100.x.

    Article  CAS  Google Scholar 

  92. Diogenes A, Ferraz CC, Akopian AN, Henry MA, Hargreaves KM. LPS sensitizes TRPV1 via activation of TLR4 in trigeminal sensory neurons. J Dent Res. 2011;90(6):759–64. https://doi.org/10.1177/0022034511400225.

    Article  CAS  PubMed  Google Scholar 

  93. Kaewpitak A, Bauer CS, Seward EP, Boissonade FM, Douglas CWI. Porphyromonas gingivalis lipopolysaccharide rapidly activates trigeminal sensory neurons and may contribute to pulpal pain. Int Endod J. 2020;53(6):846–58. https://doi.org/10.1111/iej.13282.

    Article  CAS  PubMed  Google Scholar 

  94. Díaz-Zúñiga J, Monasterio G, Alvarez C, Melgar-Rodríguez S, Benítez A, Ciuchi P, García M, Arias J, Sanz M, Vernal R. Variability of the dendritic cell response triggered by different serotypes of Aggregatibacter actinomycetemcomitans or Porphyromonas gingivalis is toll-like receptor 2 (TLR2) or TLR4 dependent. J Periodontol. 2015;86(1):108–19. https://doi.org/10.1902/jop.2014.140326.

    Article  PubMed  Google Scholar 

  95. Go M, Kou J, Lim JE, Yang J, Fukuchi KI. Microglial response to LPS increases in wild-type mice during aging but diminishes in an Alzheimer’s mouse model: implication of TLR4 signaling in disease progression. Biochem Biophys Res Commun. 2016;479(2):331–7. https://doi.org/10.1016/j.bbrc.2016.09.073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Santiago-Tirado FH, Onken MD, Cooper JA, Klein RS, Doering TL. Trojan horse transit contributes to blood-brain barrier crossing of a eukaryotic pathogen. mBio. 2017;8(1):e02183–16. https://doi.org/10.1128/mBio.02183-16.

  97. Breslin JW, Yang Y, Scallan JP, Sweat RS, Adderley SP, Murfee WL. Lymphatic vessel network structure and physiology. Compr Physiol. 2018;9(1):207–99. https://doi.org/10.1002/cphy.c180015.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Oral Health in America: Advances and Challenges [Internet]. Bethesda (MD): national institute of dental and craniofacial research (US); 2021 Dec. Section 3A, Oral Health Across the Lifespan: Working-Age Adults.

  99. Clark D, Kotronia E, Ramsay SE. Frailty, aging, and periodontal disease: Basic biologic considerations. Periodontol 2000. 2021;87(1):143–56. https://doi.org/10.1111/prd.12380.

  100. Dahlén G. Immune response in rats against lipopolysaccharides of Fusobacterium nucleatum and Bacteroides oralis administered in the root canal. Scand J Dent Res. 1980;88(2):122–9. https://doi.org/10.1111/j.1600-0722.1980.tb01203.x.

    Article  PubMed  Google Scholar 

  101. Cardoso-Toset F, Gómez-Laguna J, Gómez-Gascón L, Rodríguez-Gómez IM, Galán-Relaño A, Carrasco L, Tarradas C, Vela AI, Luque I. Histopathological and microbiological study of porcine lymphadenitis: contributions to diagnosis and control of the disease. disease. Porcine Health Manag. 2020;6(1):36. 34. https://doi.org/10.1186/s40813-020-00172-0.

  102. Visentin D, Gobin I, Maglica Ž. Periodontal pathogens and their links to neuroinflammation and neurodegeneration. Microorganisms. 2023;11(7):1832. https://doi.org/10.3390/microorganisms11071832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lavigne SE. Evolving evidence for relationships between periodontitis and systemic diseases: position paper from the canadian dental hygienists association. Can J Dental Hyg. JCHD. 2022;56(3):155–71.

  104. Reuben DB, Kremen S, Maust DT. Dementia prevention and treatment: a narrative review. JAMA Intern Med. 2024. https://doi.org/10.1001/jamainternmed.2023.8522.Advanceonlinepublication.10.1001/jamainternmed.2023.8522.

    Article  PubMed  Google Scholar 

  105. Quesada-García S, Valero-Flores P, Lozano-Gómez M. Active and assisted living, a practice for the ageing population and people with cognitive disabilities: an architectural perspective. Int J Environ Res Public Health. 2023;20(10):5886. https://doi.org/10.3390/ijerph20105886.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Hunt AP, Minett GM, Gibson OR, Kerr GK, Stewart IB. Could heat therapy be an effective treatment for Alzheimer’s and parkinson’s diseases? Narrat Rev Front Physiol. 2020;10:1556. https://doi.org/10.3389/fphys.2019.01556.

    Article  Google Scholar 

  107. Alkahtani S, Al-Johani NS, Alarifi S. Mechanistic insights, treatment paradigms, and clinical progress in neurological disorders: current and future prospects. Int J Mol Sci. 2023;24(2):1340. https://doi.org/10.3390/ijms24021340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wareham LK, Liddelow SA, Temple S, Benowitz LI, Di Polo A, Wellington C, Goldberg JL, He Z, Duan X, Bu G, Davis AA, Shekhar K, Torre A, Chan DC, Canto-Soler MV, Flanagan JG, Subramanian P, Rossi S, Brunner T, Bovenkamp DE, et al. Solving neurodegeneration: common mechanisms and strategies for new treatments. Mol Neurodegener. 2022;17(1):23. https://doi.org/10.1186/s13024-022-00524-0.

  109. Gustavsen MW, Celius EG, Moen SM, Bjølgerud A, Berg-Hansen P, Nygaard GO, Sandvik L, Lie BA, Harbo HF. No association between multiple sclerosis and periodontitis after adjusting for smoking habits. Eur J Neurol. 2015;22(3):588–90. https://doi.org/10.1111/ene.12520.

    Article  CAS  PubMed  Google Scholar 

  110. Al-Ansari A. Is there an association between multiple sclerosis and oral health? Evid Based Dent. 2021;22(1):44–5. https://doi.org/10.1038/s41432-021-0159-1.

    Article  PubMed  Google Scholar 

  111. Dioguardi M, Crincoli V, Laino L, Alovisi M, Sovereto D, Mastrangelo F, Russo LL, Muzio LL. The role of periodontitis and periodontal bacteria in the onset and progression of Alzheimer’s disease: a systematic review. J Clin Med. 2020;9(2):495. https://doi.org/10.3390/jcm9020495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Nadim R, Tang J, Dilmohamed A, Yuan S, Wu C, Bakre AT, Partridge M, Ni J, Copeland JR, Anstey KJ, Chen R. Influence of periodontal disease on risk of dementia: a systematic literature review and a meta-analysis. Eur J Epidemiol. 2020;35(9):821–33. https://doi.org/10.1007/s10654-020-00648-x.

    Article  PubMed  Google Scholar 

  113. Alvarenga MOP, Frazão DR, de Matos IG, Bittencourt LO, Fagundes NCF, Rösing CK, Maia LC, Lima RR. Is There Any Association between neurodegenerative diseases and periodontitis? A systematic review. Front Aging Neurosci. 2021;13:651437. https://doi.org/10.3389/fnagi.2021.651437.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Hu X, Zhang J, Qiu Y, Liu Z. Periodontal disease and the risk of Alzheimer’s disease and mild cognitive impairment: a systematic review and meta-analysis. Psychogeriatrics. 2021;21(5):813–25. https://doi.org/10.1111/psyg.12743.

    Article  PubMed  Google Scholar 

  115. Arrivé E, Letenneur L, Matharan F, Laporte C, Helmer C, Barberger-Gateau P, Miquel JL, Dartigues JF. Oral health condition of French elderly and risk of dementia: a longitudinal cohort study. Commun Dent Oral Epidemiol. 2012;40(3):230–8. https://doi.org/10.1111/j.1600-0528.2011.00650.x.

    Article  Google Scholar 

  116. Holmer J, Eriksdotter M, Häbel H, Hed Myrberg I, Jonsson A, Pussinen PJ, Garcia-Ptacek S, Jansson L, Sandborgh-Englund G, Buhlin K. Periodontal conditions and incident dementia: a nationwide Swedish cohort study. J Periodontol. 2022;93(9):1378–86. https://doi.org/10.1002/JPER.21-0518.

    Article  PubMed  Google Scholar 

  117. Franciquini JC, Barros GA, Reis CT, Tessarin GWL. Peri-Implantitis and brain inflammation: a putative axis. J Dental Med Sci. 2023;22(6):35–7. https://doi.org/10.9790/0853-2206103537.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the North University Center of São Paulo, University Center of Santa Fé do Sul, São Paulo State University and Union of Colleges of the Great Lakes for all support to carry out this study.

Author information

Authors and Affiliations

Authors

Contributions

GWLT: conception, design, supervision, data analyses and interpretation, drafted, figures and final version of this manuscript. LFT: design, data analyses and interpretation, draft, and critical revision; RFP: data analyses and interpretation, drafted, and critical revision; RMdS: interpretation, draft, and critical revision. RGdA: interpretation, draft, and critical revision.

Corresponding author

Correspondence to Gestter Willian Lattari Tessarin.

Ethics declarations

Conflicts of interest

The authors report no conflicts of interest related to this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tessarin, G.W.L., Toro, L.F., Pereira, R.F. et al. Peri-implantitis with a potential axis to brain inflammation: an inferential review. Odontology (2024). https://doi.org/10.1007/s10266-024-00936-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10266-024-00936-y

Keywords

Navigation