Skip to main content
Log in

Salinity induced alterations in photosynthetic and oxidative regulation are ameliorated as a function of salt secretion

  • Regular Paper – Ecology/Ecophysiology/Environmental Biology
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Ion secretion facilitates recretohalophytes to tolerate saline and drought conditions but its relative contribution to the survival of many species remains poorly understood. Tamarix chinensis has high potential for restoration of saline deteriorated lands. The water management and high salt tolerance of the plant have highlighted the need to determine the strategies that govern these mechanisms. Here we report the selectivity of this halophyte to transport, utilize, and secrete different cations and anions under various NaCl (0, 100, 200 and 400 mM) concentrations. Plant growth, photosynthesis and antioxidant defense responses were also determined to relate them with the function of ion secretion. Results reflected two different sets of strategies adopted by plants to survive low and high salinities. Exposure to highly saline conditions caused reduction in photosynthesis due to stomatal and biochemical limitations. The decreased content of photosynthetic pigments exposed plants to excessive light energy that accelerated production of ROS (i.e., hydrogen peroxide H2O2) and caused damage to cellular membranes. The increased activities of anti-oxidative enzymes (superoxide-dismutase, catalase, ascorbate-peroxidase, and glutathione-reductase) were insufficient to detoxify H2O2. In contrast, plants treated with low salinity did not face stomatal limitations while the photosynthetic pigments increased. As no damage to membranes was detected, the increased content of H2O2 was postulated for its messenger role. The assimilation of essential nutrients was affected due to increased content of toxic ions (Na+ and Cl) in the growing medium and within the plants. However, the ability to regulate K+ facilitated plants to improve water use efficiency under hyper-osmotic environment. The removal of toxic ions from the photosynthesizing tissues demands high energy, which was evident in the compromised growth of plants. This study offers a window to physiological mechanisms, e.g., potassium retention that ensure salt secretion as a beneficial strategy for prolonged survival of T. chinensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • AbdElgawad H, Zinta G, Hegab MM, Pandey R, Asard H, Abuelsoud W (2016) High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs. Front Plant Sci 7:276

    Article  PubMed  PubMed Central  Google Scholar 

  • Abei H (1984) Measurement of H2O2 in vitro. Methods in enzymology, vol. 105. Academic Press New York, pp 121–124

  • Abideen Z, Koyro H-W, Huchzermeyer B, Ahmed MZ, Gul B, Khan MA (2014) Moderate salinity stimulates growth and photosynthesis of Phragmites karka by water relations and tissue specific ion regulation. Environ Exp Bot 105:70–76

    Article  CAS  Google Scholar 

  • Anschütz U, Becker D, Shabala S (2014) Going beyond nutrition: Regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment. J Plant Physiol 171:670–687

    Article  PubMed  Google Scholar 

  • Ashraf M, Harris P (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51:163–190

    Article  CAS  Google Scholar 

  • Bazihizina N, Colmer TD, Cuin TA, Mancuso S, Shabala S (2019) Friend or foe? Chloride patterning in halophytes. Trends Plant Sci 24:142–151

    Article  CAS  PubMed  Google Scholar 

  • Bellasio C, Quirk J, Beerling DJ (2018) Stomatal and non-stomatal limitations in savanna trees and C4 grasses grown at low, ambient and high atmospheric CO2. Plant Sci 274:181–192

    Article  CAS  PubMed  Google Scholar 

  • Beyer WF Jr, Fridovich I (1987) Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Analytical Biochem 161:559–566

    Article  CAS  Google Scholar 

  • Bose J, Rodrigo-Moreno A, Shabala S (2014) ROS homeostasis in halophytes in the context of salinity stress tolerance. J Exp Bot 65:1241–1257

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Chen S, Li J, Fritz E, Wang S, Hüttermann A (2002) Sodium and chloride distribution in roots and transport in three poplar genotypes under increasing NaCl stress. For Ecol Manage 168:217–230

    Article  Google Scholar 

  • Critchley C (1982) Stimulation of photosynthetic electron transport in a salt-tolerant plant by high chloride concentrations. Nature 298:483–485

    Article  CAS  Google Scholar 

  • Cuevas J, Daliakopoulos IN, del Moral F, Hueso JJ, Tsanis IK (2019) A review of soil-improving cropping systems for soil salinization. Agronomy 9:295

    Article  Google Scholar 

  • Dassanayake M, Larkin JC (2017) Making plants break a sweat: The structure, function, and evolution of plant salt glands. Front Plant Sci 8

  • Debez A, Saadaoui D, Slama I, Huchzermeyer B, Abdelly C (2010) Responses of Batis maritima plants challenged with up to two-fold seawater NaCl salinity. J Plant Nutr Soil Sci 173:291–299

    Article  CAS  Google Scholar 

  • English JP, Colmer TD (2013) Tolerance of extreme salinity in two stem-succulent halophytes (Tecticornia species). Funct Plant Biol 40:897–912

    Article  CAS  PubMed  Google Scholar 

  • Farquhar GD, Sharkey TD (1982) Stomatal conductance and photosynthesis. Annu Rev Plant Biol 33:317–345

    Article  CAS  Google Scholar 

  • Feng X, An P, Li X, Guo K, Yang C, Liu X (2018) Spatiotemporal heterogeneity of soil water and salinity after establishment of dense-foliage Tamarix chinensis on coastal saline land. Ecol Engineer 121:104–113

    Article  Google Scholar 

  • Fernando DR, Marshall AT, Green PT (2017) Cellular ion interactions in two endemic tropical rainforest species of a novel metallophytic tree genus. Tree Physiol 38:119–128

    Article  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21–25

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155:93–100

    Article  CAS  PubMed  Google Scholar 

  • Franco-Navarro JD, Brumós J, Rosales MA, Cubero-Font P, Talón M, Colmenero-Flores JM (2016) Chloride regulates leaf cell size and water relations in tobacco plants. J Exp Bot 67:873–891

    Article  CAS  Google Scholar 

  • Gaskin J (2003) Tamaricaceae. Flowering Plants· Dicotyledons. Springer, pp 363–368

  • Gossett DR, Millhollon EP, Lucas M (1994) Antioxidant response to NaCl stress in salt-tolerant and salt-sensitive cultivars of cotton. Crop Sci 34:706–714

    Article  CAS  Google Scholar 

  • Hagemeyer J, Waisel Y (1988) Excretion of ions (Cd2+, Li+, Na+ and Cl) by Tamarix aphylla. Physiol Plant 73:541–546

    Article  CAS  Google Scholar 

  • He F-L, Bao A-K, Wang S-M, Jin H-X (2019) NaCl stimulates growth and alleviates drought stress in the salt-secreting xerophyte Reaumuria soongorica. Environ Exp Bot 162:433–443

    Article  CAS  Google Scholar 

  • Herschbach C, Teuber M, Eiblmeier M, Ehlting B, Ache P, Polle A, Schnitzler J-P, Rennenberg H (2010) Changes in sulphur metabolism of grey poplar (Populus × canescens) leaves during salt stress: a metabolic link to photorespiration. Tree Physiol 30:1161–1173

    Article  CAS  PubMed  Google Scholar 

  • Kiani-Pouya A, Roessner U, Jayasinghe NS, Lutz A, Rupasinghe T, Bazihizina N, Bohm J, Alharbi S, Hedrich R, Shabala S (2017) Epidermal bladder cells confer salinity stress tolerance in the halophyte quinoa and Atriplex species. Plant Cell Environ 40:1900–1915

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi H, Masaoka Y, Takahashi Y, Ide Y, Sato S (2007) Ability of salt glands in Rhodes grass (Chloris gayana Kunth) to secrete Na+ and K+. Soil Sci Plant Nutr 53:764–771

    Article  CAS  Google Scholar 

  • Koyro H-W, Hussain T, Huchzermeyer B, Khan MA (2013) Photosynthetic and growth responses of a perennial halophytic grass Panicum turgidum to increasing NaCl concentrations. Environ Exp Bot 91:22–29

    Article  CAS  Google Scholar 

  • Li J, Hussain T, Feng X, Guo K, Chen H, Yang C, Liu X (2019) Comparative study on the resistance of Suaeda glauca and Suaeda salsa to drought, salt, and alkali stresses. Ecol Engine 140:105593

    Article  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Litalien A, Zeeb B (2020) Curing the earth: A review of anthropogenic soil salinization and plant-based strategies for sustainable mitigation. Sci Total Environ 698:134235

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Xia J, Fang Y, Li T, Liu J (2014) Effects of salt-drought stress on growth and physiobiochemical characteristics of Tamarix chinensis seedlings. Sci World J 2014:7

    Article  Google Scholar 

  • Long S, Bernacchi C (2003) Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. J Exp Bot 54:2393–2401

    Article  CAS  PubMed  Google Scholar 

  • Ma H, Tian C, Feng G, Yuan J (2011) Ability of multicellular salt glands in Tamarix species to secrete Na+ and K+ selectively. SCIENCE CHINA Life Sci 54:282

    Article  CAS  Google Scholar 

  • Maruyama-Nakashita A, Nakamura Y, Watanabe-Takahashi A, Yamaya T, Takahashi H (2004) Induction of SULTR1;1 Sulfate Transporter in Arabidopsis Roots Involves Protein Phosphorylation/Dephosphorylation Circuit for Transcriptional Regulation. Plant Cell Physiol 45:340–345

    Article  CAS  PubMed  Google Scholar 

  • Moore GW, Cleverly JR, Owens MK (2008) Nocturnal transpiration in riparian Tamarix thickets authenticated by sap flux, eddy covariance and leaf gas exchange measurements. Tree Physiol 28:521–528

    Article  PubMed  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Nazar R, Iqbal N, Masood A, Syeed S, Khan NA (2011) Understanding the significance of sulfur in improving salinity tolerance in plants. Environ Exp Bot 70:80–87

    Article  CAS  Google Scholar 

  • Newete SW, Allem SM, Venter N, Byrne ML (2020) Tamarix efficiency in salt excretion and physiological tolerance to salt-induced stress in South Africa. Intern J Phytorem 22:3–9

    Article  CAS  Google Scholar 

  • Parida AK, Veerabathini SK, Kumari A, Agarwal PK (2016) Physiological, anatomical and metabolic implications of salt tolerance in the halophyte Salvadora persica under hydroponic culture condition. Front Plant Sci 7

  • Park S, Steen CJ, Lyska D, Fischer AL, Endelman B, Iwai M, Niyogi KK, Fleming GR (2019) Chlorophyll–carotenoid excitation energy transfer and charge transfer in Nannochloropsis oceanica for the regulation of photosynthesis. Proceed Nat Acad Sci 116:3385–3390

    Article  CAS  Google Scholar 

  • Pérez-López U, Robredo A, Lacuesta M, Mena-Petite A, Muñoz-Rueda A (2012) Elevated CO2 reduces stomatal and metabolic limitations on photosynthesis caused by salinity in Hordeum vulgare. Photosynt Res 111:269–283

    Article  Google Scholar 

  • Ramadan T (1998) Ecophysiology of salt excretion in the xero-halophyte Reaumuria hirtella. New Phytol 139:273–281

    Article  CAS  Google Scholar 

  • Ramadan T (2001) Dynamics of salt secretion by Sporobolus spicatus (Vahl) kunth from sites of differing salinity. Ann Bot 87:259–266

    Article  CAS  PubMed  Google Scholar 

  • Sairam RK, Saxena DC (2000) Oxidative stress and antioxidants in wheat genotypes: Possible mechanism of water stress tolerance. J Agron Crop Sci 184:55–61

    Article  CAS  Google Scholar 

  • Schulte M, Offer C, Hansen U (2003) Induction of CO2-gas exchange and electron transport: comparison of dynamic and steady-state responses in Fagus sylvatica leaves. Trees Struct Funct 17:153–163

    Article  CAS  Google Scholar 

  • Shabala S (2013) Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. Ann Bot 112:1209–1221

    Article  PubMed  PubMed Central  Google Scholar 

  • Shabala S, Bose J, Hedrich R (2014) Salt bladders: do they matter? Trends Plant Sci 19:687–691

    Article  CAS  PubMed  Google Scholar 

  • Shafroth PB, Briggs MK (2008) Restoration ecology and invasive riparian plants: An introduction to the special section on tamarix spp. Western North America Restor Ecol 16:94–96

    Article  Google Scholar 

  • Sun L, Liu W, Liu G, Chen T, Zhang W, Wu X, Zhang G, Zhang Y, Li L, Zhang B, Zhang B, Wang B, Yang R (2016) Temporal and spatial variations in the stable carbon isotope composition and carbon and nitrogen contents in current-season twigs of Tamarix chinensis Lour. and their relationships to environmental factors in the Laizhou Bay wetland in China. Ecol Engine 90:417–426

    Article  Google Scholar 

  • Sun L, Zhang B, Wang B, Zhang G, Zhang W, Zhang B, Chang S, Chen T, Liu G (2017) Leaf elemental stoichiometry of Tamarix Lour. species in relation to geographic, climatic, soil, and genetic components in China. Ecol Eng 106:448–457

    Article  Google Scholar 

  • Thomson WW, Berry WL, Liu LL (1969) Localization and secretion of salt by the salt glands of Tamarix aphylla. Proc Natl Acad Sci U S A 63:310–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waisel Y, Eshel A, Agami M (1986) Salt balance of leaves of the mangrove Avicennia marina. Physiol Plant 67:67–72

    Article  CAS  Google Scholar 

  • Wang Y, Wu W-H (2017) Regulation of potassium transport and signaling in plants. Curr Opin Plant Biol 39:123–128

    Article  CAS  PubMed  Google Scholar 

  • Watson SJ, Sowden RG, Jarvis P (2018) Abiotic stress-induced chloroplast proteome remodelling: a mechanistic overview. J Exp Bot 69:2773–2781

    Article  CAS  PubMed  Google Scholar 

  • Way DA, Katul GG, Vico G, Manzoni S (2014) Increasing water use efficiency along the C3 to C4 evolutionary pathway: a stomatal optimization perspective. J Exp Bot 65:3683–3693

    Article  PubMed  PubMed Central  Google Scholar 

  • Wege S, Gilliham M, Henderson SW (2017) Chloride: not simply a ‘cheap osmoticum’, but a beneficial plant macronutrient. J Exp Bot 68:3057–3069

    Article  CAS  PubMed  Google Scholar 

  • Wen Z, Tyerman SD, Dechorgnat J, Ovchinnikova E, Dhugga KS, Kaiser BN (2017) Maize NPF6 proteins are homologs of arabidopsis CHL1 that are selective for both nitrate and chloride. Plant Cell 29:2581–2596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia J, Zhang S, Guo J, Rong Q, Zhang G (2015) Critical effects of gas exchange parameters in Tamarix chinensis Lour on soil water and its relevant environmental factors on a shell ridge island in China’s Yellow River Delta. Ecol Engine 76:36–46

    Article  Google Scholar 

  • Xia J, Zhao X, Ren J, Lang Y, Qu F, Xu H (2017a) Photosynthetic and water physiological characteristics of Tamarix chinensis under different groundwater salinity conditions. Environ Exp Bot 138:173–183

    Article  CAS  Google Scholar 

  • Xia J, Zhao Z, Sun J, Liu J, Zhao Y (2017b) Response of stem sap flow and leaf photosynthesis in Tamarix chinensis to soil moisture in the Yellow River Delta, China. Photosynthetica 55:368–377

    Article  CAS  Google Scholar 

  • Yuan F, Leng B, Wang B (2016) Progress in studying salt secretion from the salt glands in recretohalophytes: How do plants secrete salt? Front Plant Sci 7

  • Zaharieva T, Yamashita K, Matsumoto H (1999) Iron deficiency induced changes in ascorbate content and enzyme activities related to ascorbate metabolism in cucumber roots. Plant Cell Physiol 40:273–280

    Article  CAS  Google Scholar 

  • Zhang J-W, D’Rozario A, Duan S-M, Wang X-Y, Liang X-Q, Pan B-R (2018) Epidermal characters of Tamarix L. (Tamaricaceae) from Northwest China and their taxonomic and palaeogeographic implications. J Palaeogeogr 7:179–196

    Article  Google Scholar 

  • Ziska LH, DeJong TM, Hoffman GF, Mead RM (1991) Sodium and chloride distribution in salt-stressed Prunus salicina, a deciduous tree species. Tree Physiol 8:47–57

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This study was funded by the Chinese Academy of Science grant no (KFZD-SW-112).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tabassum Hussain or Xiaojing Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, T., Li, J., Feng, X. et al. Salinity induced alterations in photosynthetic and oxidative regulation are ameliorated as a function of salt secretion. J Plant Res 134, 779–796 (2021). https://doi.org/10.1007/s10265-021-01285-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-021-01285-5

Keywords

Navigation