Advertisement

Journal of Plant Research

, Volume 132, Issue 3, pp 325–333 | Cite as

Theoretical models for branch formation in plants

  • Akiko NakamasuEmail author
  • Takumi HigakiEmail author
Current Topics in Plant Research
  • 202 Downloads

Abstract

Various branch architectures are observed in living organisms including plants. Branch formation has traditionally been an area of interest in the field of developmental biology, and theoretical approaches are now commonly used to understand the complex mechanisms involved. In this review article, we provide an overview of theoretical approaches including mathematical models and computer simulations for studying plant branch formation. These approaches cover a wide range of topics. In particular, we focus on the importance of positional information in branch formation, which has been especially revealed by theoretical research in plants including computations of developmental processes.

Keywords

Branch Divarication Mathematical model Plant morphogenesis Theoretical approach 

Notes

Acknowledgements

We thank the members of our laboratory for their help, Shigeru Kondo for the inspiration for this work, Seisuke Kimura and Nobuhiko J. Suematsu for critical discussion and suggestions, and Momoko Ikeuchi for providing a sample and suggestions. This work was supported by Grants from the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Numbers 17K19380 and 18H05492, from The Sumitomo Foundation for a Grant for Basic Science Research Projects Grant Number 160146, and The Canon Foundation to T.H. We thank Robbie Lewis, MSc, from Edanz Group (http://www.edanzediting.com/ac) for editing a draft of this manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Adler I (1974) A model of contact pressure in phyllotaxis. J Theor Biol 45:1–79CrossRefGoogle Scholar
  2. Band LR, Fozard JA, Godin C, Jensen OE, Pridmore T, Bennett MJ, King JR (2012) Multiscale systems analysis of root growth and development: modeling beyond the network and cellular scales. Plant Cell 24:3892–3960CrossRefGoogle Scholar
  3. Barnsley MF (1988) Fractals everywhere. Academic, San DiegoGoogle Scholar
  4. Berger Y, Harpaz-Saad S, Brand A, Melnik H, Sirding N, Alvarez JP, Zinder M, Samach A, Eshed Y, Ori N (2009) The NAC-domain transcription factor GOBLET specifies leaflet boundaries in compound tomato leaves. Development 136:823–832CrossRefGoogle Scholar
  5. Bilsborough GD, Runions A, Barkoulas M, Jenkins HW, Hasson A, Galinh C, Laufs P, Hay A, Prusinkiewicz P, Tsiantis M (2011) Model for the regulation of Arabidopsis thaliana leaf margin development. Proc Natl Acad Sci USA 108:3424–3429CrossRefGoogle Scholar
  6. Bommert P, Whipple C (2018) Grass inflorescence architecture and meristem determinacy. Semin Cell Dev Biol 79:37–47CrossRefGoogle Scholar
  7. Borchert R, Honda H (1984) Control of development in the bifurcation system of Tabebuia Rosea: a computer simulation. Bot Gaz 145:184–195CrossRefGoogle Scholar
  8. Bozorg B, Krupinski P, Jonsson H (2014) Stress and strain provide positional and directional cues in development. PLoS Comput Biol 10:e1003410CrossRefGoogle Scholar
  9. Cohen D (1967) Computer simulation of biological pattern generation processes. Nature 216:246–248CrossRefGoogle Scholar
  10. Couturie E, du Pont SC, Douady S (2011) The filling law: a general framework for leaf folding and its consequences on leaf shape diversity. J Theor Biol 289:47–64CrossRefGoogle Scholar
  11. Crampin EJ, Gaffney EA, Maini PK (2002) Stability analysis of non-autonomous reaction-diffusion systems: the effects of growing domains. J Math Biol 44:107–128CrossRefGoogle Scholar
  12. Douday S, Couder Y (1996a) Phyllotaxis as a dynamical self organizing process part I: the spiral modes resulting from time-periodic iterations. J Theor Biol 178:255–274CrossRefGoogle Scholar
  13. Douday S, Couder Y (1996b) Phyllotaxis as a dynamical self organizing process part II: the spontaneous formation of a periodicity and the coexistence of spiral and whorled patterns. J Theor Biol 178:275–294CrossRefGoogle Scholar
  14. Efroni I, Eshed Y, Lifschitz E (2010) Morphogenesis of simple and compound leaves: a critical review. Plant Cell 22:1019–1032CrossRefGoogle Scholar
  15. Fisher JB, Honda H (1977) Computer simulation of branching pattern and geometry in Terminalia (Combretaceae), a tropical tree. Bot Gaz 138:377–384CrossRefGoogle Scholar
  16. Fu Y, Gu Y, Zheng Z, Wasteneys G, Yang Z (2005) Arabidopsis interdigitating cell growth requires two antagonistic pathways with opposing action on cell morphogenesis. Cell 120:687–700CrossRefGoogle Scholar
  17. Fujita H, Mochizuki A (2006) Pattern formation of leaf veins by the positive feedback regulation between auxin flow and auxin efflux carrier. J Theor Biol 241:541–551CrossRefGoogle Scholar
  18. Fujita H, Toyokura K, Okada K, Kawaguchi M (2011) Reaction-diffusion pattern in shoot apical meristem of plants. PLoS One 6:e18243CrossRefGoogle Scholar
  19. Hamant O, Heisler MG, Jönsson H, Krupinski P, Uyttewaal M, Bokov P, Corson F, Sahlin P, Boudaoud A, Meyerowitz EM, Couder Y, Traas J (2008) Developmental patterning by mechanical signals in Arabidopsis. Science 322:1650–1655CrossRefGoogle Scholar
  20. Harrison CJ (2017) Auxin transport in the evolution of branching forms. New Phytol 215:545–551CrossRefGoogle Scholar
  21. Harrison LG, Kolář M (1988) Coupling between reaction-diffusion prepattern and expressed morphogenesis, applied to desmids and dasyclads. J Theor Biol 130:493–515CrossRefGoogle Scholar
  22. Hervieux N, Dumond M, Sapala A, Routier-Kierzkowsa A, Kierzkowski D, Roeder AHK, Smith RS, Boudaoud A, Hamant O (2016) A mechanical feedback restricts sepal growth and shape in Arabidopsis. Curr Biol 26:1019–1028CrossRefGoogle Scholar
  23. Higaki T, Takigawa-Imamura H, Akita K, Kutsuna N, Kobayashi R, Hasezawa S, Miura T (2017) Exogenous cellulase switches cell interdigitation to cell elongation in an RIC1-dependent manner in Arabidopsis thaliana cotyledon pavement cells. Plant Cell Physiol 58:106–119Google Scholar
  24. Hinsinger P, Gobran GR, Gregory PJ, Wenzel WW (2005) Rhizosphere geometry and heterogeneity arising from root- mediated physical and chemical processes. New Phytol 168:293–303CrossRefGoogle Scholar
  25. Hirashima T, Iwasa Y, Morishita Y (2009) Dynamic modeling of branching morphogenesis of ureteric bud in early kidney development. J Theor Biol 259:58–66CrossRefGoogle Scholar
  26. Holloway DM, Harrison LG (1999) Algal morphogenesis: modelling interspecific variation in Micrasterias with reaction-diffusion patterned catalysis of cell surface growth. Philos Trans R Soc Lond B 354:417–433CrossRefGoogle Scholar
  27. Holloway DM, Harrison LG (2008) Pattern selection in plants: coupling chemical dynamics to surface growth in three dimensions. Ann Bot 101:361–374CrossRefGoogle Scholar
  28. Honda H (1971) Description of the form of trees by the parameters of the tree-like body: effects of the branching angle and the branch length on the sample of the tree-like body. J Theor Biol 31:331–338CrossRefGoogle Scholar
  29. Honda H, Hatta H (2004) Branching models consisting of two principles: phyllotaxis and effect of gravity. Forma 19:183–196Google Scholar
  30. Honda H, Hatta H, Fisher JB (1997) Branch geometry in Cornus kousa (Cornaceae): computer simulations. Am J Bot 84:745–755CrossRefGoogle Scholar
  31. Hong L, Dumond M, Tsugawa S, Sapala A, Routier-Kierzkowsa A, Zhou Y, Chen C, Kiss A, Zhu M, Hamant O, Smith RS, Komatsuzaki T, Li C, Boudaoud A, Roeder AHK (2016) Variable cell growth yields reproducible organ development through spatiotemporal averaging. Dev Cell 38:15–32CrossRefGoogle Scholar
  32. Horst RJ, Fujita H, Lee JS, Rychel AL, Garrick JM, Kawagchi M, Peterson KM, Trii KU (2015) Molecular framework of a regulatory circuit initiating two-dimensional spatial patterning of stomatal linage. PLoS Genet 11:e1005374CrossRefGoogle Scholar
  33. Iber D, Menshykau D (2015) The control of branching morphogenesis. Open Biol 3:130088CrossRefGoogle Scholar
  34. Inoue A, Furuki T, Imaichi R (2008) Developmental morphology of irregularly-shaped gametophytes of the liverwort Mizutania riccardioides (Mizutaniaceae). Acta Phytotax Geobot 59:239–247Google Scholar
  35. Jones AM, Dangle JL (1996) Logjam at the Styx: programmed cell death in plants. Trends Plant Sci 1:114–119CrossRefGoogle Scholar
  36. Jones MA, Shen J-J, Fu Y, Li H, Yang Z, Grierson CS (2002) The Arabidopsis Rop2 GTPase is a positive regulator of both root hair initiation and tip growth. Plant Cell 14:763–776CrossRefGoogle Scholar
  37. Jonsson H, Heisler MG, Shapiro BR, Meyerowitz EM, Mjolsness E (2006) An auxin-driven polarized transport model for phyllotaxis. Proc Natl Acad Sci USA 103:1633–1638CrossRefGoogle Scholar
  38. Keyes SD, Gostling NJ, Cheung JH, Roose T, Sinclair I, Marchant A (2017) The application of contrast media for in vivo feature enhancement in X-ray computed tomography of soil-grown plant roots. Microsc Microanal 23:538–552CrossRefGoogle Scholar
  39. Kobayashi R (1993) Modeling and numerical simulations of dendritic crystal growth. Phys D 63:410–423CrossRefGoogle Scholar
  40. Kuhlemeier C (2007) Phyllotaxis. Trends Plant Sci 12:1360–1385CrossRefGoogle Scholar
  41. Kuhlemeier C (2017) Phyllotaxis. Curr Biol 27:853–909CrossRefGoogle Scholar
  42. Lacalli TC (1975a) Morphogenesis in Micrasterias I. Tip growth. J Embryol Exp Morphol 33:95–115Google Scholar
  43. Lacalli TC (1975b) Morphogenesis in Micrasterias II. Pattern of morphogenesis. J Embryol Exp Morphol 33:117–126Google Scholar
  44. Larue CT, Wen J, Walker JC (2009) A microRNA-transcription factor module regulate organ size and patterning in Arabidopsis. Plant J 58:450–463CrossRefGoogle Scholar
  45. Li J, Kim T, Szymanski DB (2018) Multi-scale regulation of cell branching: modeling morphogenesis. Dev Biol.  https://doi.org/10.1016/j.ydbio.2018.12.004 Google Scholar
  46. Lindenmayer A (1968) Mathematical models for cellular interaction in development, Parts I and II. J Theor Biol 18:280–315CrossRefGoogle Scholar
  47. Lindenmayer A (1971) Developmental systems without cellular interaction, their languages and grammars. J Theor Biol 30:455–484CrossRefGoogle Scholar
  48. Mandelbrout BB (1983) The fractal geometry of nature. W. H. Freeman, San FranciscoCrossRefGoogle Scholar
  49. Matsuda K, Gotoh H, Tajika Y, Sushida T, Aonuma H, Niimi T, Akiyama M, Inoue Y, Kondo S (2017) Complex furrows in a 2D epithelial sheet code the 3D structure of a beetle horn. Sci Rep 7:13939CrossRefGoogle Scholar
  50. McConnell JR, Emery J, Eshed Y, Bao K, Bowman J, Barton MK (2011) Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411:709–713CrossRefGoogle Scholar
  51. Mech R, Prusinkiewicz P (1996) Visual models of plants interacting with their environment. In: SIGGRAPH ‘96 proceedings of the 23rd annual conference on computer graphics and interactive techniques, pp 397–410Google Scholar
  52. Meinhardt H (1976) Morphogenesis of lines and nets. Differentiation 6:117–123CrossRefGoogle Scholar
  53. Meinhardt H (1982) Models of biological pattern formation. Academic, London, pp 37–38Google Scholar
  54. Meinhardt H, Gierer A (1974) Applications of a theory of biological pattern formation based on lateral inhibition. J Cell Sci 15:321–346Google Scholar
  55. Menshykau D, Kraemer C, Iber D (2012) Branch mode selection during early lung development. PLoS Comput Biol 8:e1002377CrossRefGoogle Scholar
  56. Metzger RJ, Klein OD, Martin GR, Krasnow MA (2008) The branching programme of mouse lung development. Nature 453:745–751CrossRefGoogle Scholar
  57. Mitchison GJ (1977) Phyllotaxis and the Fibonacci series. Science 196:270–275CrossRefGoogle Scholar
  58. Mitchison GJ (1980) A model for vein formation in higher plants. Proc R Soc Lond B 207:79–109CrossRefGoogle Scholar
  59. Mitchison GJ (1981) The polar transport of auxin and vein patterns in plants. Philos Trans R Soc Lond B 295:461–471CrossRefGoogle Scholar
  60. Miura T (2015) Models of lung branching morphogenesis. J Biochem 157:121–127CrossRefGoogle Scholar
  61. Miura T, Shiota K, Morriss-Kay G, Maini PK (2006) Mixed-mode pattern in Doublefoot mutant mouse limb—Turing reaction–diffusion model on a growing domain during limb development. J Thor Biol 240:107–128Google Scholar
  62. Miyoshi S, Kimura S, Ootsuki R, Higaki T, Nakamasu A (2019) Developmental analysis of divarication in leaves of the aquatic fern Microsorum pteropus and its variants. PLoS One 14:e0210141CrossRefGoogle Scholar
  63. Molendijk AJ, Bischoff F, Rajendrakumar CSV, Friml J, Braun M, Girloy S, Palme K (2001) Arabidopsis thaliana Rop GTPases are localized to tips of root hairs and control polar growth. EMBO J 20:2779–2788CrossRefGoogle Scholar
  64. Momose S (1967) Prothallia of the Japanese ferns (Filicales). University of Tokyo Press, Tokyo [in Japanese] Google Scholar
  65. Nagashima Y, Tsugawa S, Mochizuki A, Sasaki T, Fukuda H, Oda Y (2018) A Rho-based reaction-diffusion system governs cell wall patterning in metaxylem vessels. Sci Rep 8:11542CrossRefGoogle Scholar
  66. Nakagawa M, Shimamoto K, Kyozuka J (2002) Overexpression of RCN1 and RCN2, rice TERMINAL FLOWER 1/CENTRORADIALIS homologs, confers delay of phase transition and altered panicle morphology in rice. Plant J 29:743–750CrossRefGoogle Scholar
  67. Nakamasu A, Nakayama H, Nakayama N, Suematsu NJ, Kimura S (2014) A developmental model for branching morphogenesis of lake cress compound leaf. PLoS One 9:e111615CrossRefGoogle Scholar
  68. Nakamasu A, Suematsu NJ, Kimura S (2017) Asymmetries in leaf branch are associated with differential speeds along growth axes: a theoretical prediction. Dev Dyn 246:981–991CrossRefGoogle Scholar
  69. Nakayama H, Nakayama N, Nakamasu A, Sinha N, Kimura S (2012) Toward elucidating the mechanisms that regulate heterophylly. Plant Morphol 24:57–63CrossRefGoogle Scholar
  70. Niklas KJ (1988) The role of phyllotactic pattern as a “developmental constraint” on the interception of light by leaf surfaces. Evolution 42:1Google Scholar
  71. Okuda S, Miura T, Unoue Y, Adachi T, Eirak M (2018) Combining Turing and 3D vertex models reproduces autonomous multicellular morphogenesis with undulation, tubulation, and branching. Sci Rep 8:2386CrossRefGoogle Scholar
  72. Parihar NS (1967) Bryophyta. Indian Universities Press, AllahabadGoogle Scholar
  73. Payne RJH, Grierson CS (2009) A theoretical model for ROP localisation by auxin in Arabidopsis root hair cells. PLoS One 4(12):e8337CrossRefGoogle Scholar
  74. Prusinkiewicz P, Lindenmayer A (1990) The algorithmic beauty of plants. Springer, New YorkCrossRefGoogle Scholar
  75. Prusinkiewicz P, Runions A (2012) Computational models of plant development and form. New Phytol 193:549–569CrossRefGoogle Scholar
  76. Prusinkiewicz P, Erasmus Y, Lane B, Harder LD, Coen E (2007) Evolution and development of inflorescence architectures. Science 316:1452–1456CrossRefGoogle Scholar
  77. Reinhardt D, Pesce ER, Stieger P, Mandel T, Baltensperger K, Bennett M, Trass J, Friml J, Kuhiemeier C (2003) Regulation of phyllotaxis by polar auxin transport. Nature 426:255–260CrossRefGoogle Scholar
  78. Richter PH, Schranner R (1978) Leaf arrangement. Geometry, morphogenesis, and classification. Naturwissenschaften 65:319–327CrossRefGoogle Scholar
  79. Sapala A, Runions A, Routier-Kierzkowska A, Das Gupta M, Hong L, Hofhuis H, Verger S, Mosca G, Li C, Hay A, Hamant O, Roeder AHK, Tsiantis M, Prusinkiewicz P, Smith RS (2018) Why plants make puzzle cells, and how their shape emerges. eLife 7:e32794CrossRefGoogle Scholar
  80. Sawa S, Watanabe K, Goto K, Kanaya E, Morita EH, Okada K (1999) FILAMENTOUS FLOWER, a meristem and organ identity gene of Arabidopsis, encodes a protein with a zinc finger and HMG-related domains. Genes Dev 13:1079–1088CrossRefGoogle Scholar
  81. Shipman PD, Newell AC (2004) Phyllotactic patterns on plants. Phys Rev Lett 92:168102CrossRefGoogle Scholar
  82. Siegfried KR, Eshed Y, Baum SF, Otsuga D, Drews GN, Bowman JL (1999) Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development 126:4117–4128Google Scholar
  83. Smith RS, Guyomarc’h S, Mandel T, Reinhardt D, Kuhlemeier C, Prusinkiewicz P (2006) A plausible model of phyllotaxis. Proc Natl Acad Sci USA 103:1301–1306CrossRefGoogle Scholar
  84. Takigawa-Imamura H, Morita R, Iwaki T, Tsuji T, Yoshikawa K (2015) Tooth germ invagination from cell–cell interaction: working hypothesis on mechanical instability. J Theor Biol 382:284–291CrossRefGoogle Scholar
  85. Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond B 237:37–72CrossRefGoogle Scholar
  86. van Berkel K, de Boer RJ, Scheres B, ten Tusscher K (2013) Polar auxin transport: models and mechanisms. Development 140:2253–2268CrossRefGoogle Scholar
  87. van Iterson G (1907) Mathematische und mikroskopisch-anatomische Studien über Blattstellungen. Fischer, JenaGoogle Scholar
  88. Walter A, Silk WK, Schurr U (2009) Environmental effects on spatial and temporal patterns of leaf and root growth. Annu Rev Plant Biol 60:279–304CrossRefGoogle Scholar
  89. Wang Y, Jiao Y (2018) Axillary meristem initiation—a way to branch out. Curr Opin Plant Biol 41:61–66CrossRefGoogle Scholar
  90. Witten TA, Sander LM (1981) Diffusion-limited aggregation, a kinetic critical phenomenon. Phys Rev Lett 47:1400–1403CrossRefGoogle Scholar
  91. Xu H, Sun M, Zhao X (2017) Turing mechanism underlying a branching model for lung morphogenesis. PLoS One 12:e0174946CrossRefGoogle Scholar
  92. Zhou C, Han L, Hou C, Metelli A, Qi L, Tadege M, Mysore KS, Wang Z (2011) Developmental analysis of a Medicago truncatula smooth leaf margin1 mutant reveals context-dependent effects on compound leaf development. Plant Cell 23:2106–2124CrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  1. 1.International Research Organization for Advanced Science and TechnologyKumamoto UniversityKumamotoJapan

Personalised recommendations