Journal of Plant Research

, Volume 131, Issue 1, pp 59–66 | Cite as

Circadian clock during plant development

Current Topics in Plant Research


Plants have endogenous biological clocks that allow organisms to anticipate and prepare for daily and seasonal environmental changes and increase their fitness in changing environments. The circadian clock in plants, as in animals and insects, mainly consists of multiple interlocking transcriptional/translational feedback loops. The circadian clock can be entrained by environmental cues such as light, temperature and nutrient status to synchronize internal biological rhythms with surrounding environments. Output pathways link the circadian oscillator to various physiological, developmental, and reproductive processes for adjusting the timing of these biological processes to an appropriate time of day or a suitable season. Recent genomic studies have demonstrated that polymorphism in circadian clock genes may contribute to local adaptations over a wide range of latitudes in many plant species. In the present review, we summarize the circadian regulation of biological processes throughout the life cycle of plants, and describe the contribution of the circadian clock to local adaptation.


Circadian clock Development Local adaptation Output 



We thank T. Koto for technical assistance. This work was supported by JST PRESTO grant 888067 (to M.E.), JSPS KAKENHI grant 16H01240 and 17K19392 (to M.E.), grants from the Yamada Science Foundation, Senri Life Science Foundation, and the Nakajima Foundation (to M.E.), and Grants-in-Aid for Scientific Research on Priority Area 25113005 (to T.A.).


  1. An H, Roussot C, Suarez-Lopez P, Corbesier L, Vincent C, Pineiro M, Hepworth S, Mouradov A, Justin S, Turnbull C, Coupland G (2004) CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. Development 131:3615–3626PubMedCrossRefGoogle Scholar
  2. Anwer MU, Boikoglou E, Herrero E, Hallstein M, Davis AM, James GV, Nagy F, Davis SJ (2014) Natural variation reveals that intracellular distribution of ELF3 protein is associated with function in the circadian clock. eLife 3:e02206Google Scholar
  3. Atamian HS, Creux NM, Brown EA, Garner AG, Blackman BK, Harmer SL (2016) Circadian regulation of sunflower heliotropism, floral orientation, and pollinator visits. Science 353:587–590PubMedCrossRefGoogle Scholar
  4. Baskin JM, Baskin CC (1976) Effect of photoperiod on germination of cyperus inflexus seeds. Bot Gaz 137:269–273CrossRefGoogle Scholar
  5. Black M, Wareing PF (1954) Photoperiodic control of germination in seed of Birch (Betula Pubescens Ehrh). Nature 174:705–706CrossRefGoogle Scholar
  6. Black M, Wareing PF (1955) Growth studies in woody species. 7. Photoperiodic control of germination in Betula Pubescens Ehrh. Physiol Plant 8:300–316CrossRefGoogle Scholar
  7. Booij-James IS, Swegle WM, Edelman M, Mattoo AK (2002) Phosphorylation of the D1 photosystem II reaction center protein is controlled by an endogenous circadian rhythm. Plant Physiol 130:2069–2075PubMedPubMedCentralCrossRefGoogle Scholar
  8. Borland AM, Hartwell J, Jenkins GI, Wilkins MB, Nimmo HG (1999) Metabolite control overrides circadian regulation of phosphoenolpyruvate carboxylase kinase and CO2 fixation in Crassulacean acid metabolism. Plant Physiol 121:889–896PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bryant TR (1972) Gas-exchange in dry seeds—circadian rhythmicity in absence of DNA-replication, transcription, and translation. Science 178:634–636PubMedCrossRefGoogle Scholar
  10. Covington MF, Maloof JN, Straume M, Kay SA, Harmer SL (2008) Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development. Genome Biol 9:R130Google Scholar
  11. de Lucas M, Daviere JM, Rodriguez-Falcon M, Pontin M, Iglesias-Pedraz JM, Lorrain S, Fankhauser C, Blazquez MA, Titarenko E, Prat S (2008) A molecular framework for light and gibberellin control of cell elongation. Nature 451:480–484PubMedCrossRefGoogle Scholar
  12. de Montaigu A, Toth R, Coupland G (2010) Plant development goes like clockwork. Trends Genet 26:296–306PubMedCrossRefGoogle Scholar
  13. Densmore RV (1997) Effect of day length on germination of seeds collected in Alaska. Am J Bot 84:274–278PubMedCrossRefGoogle Scholar
  14. Dodd AN, Salathia N, Hall A, Kevei E, Toth R, Nagy F, Hibberd JM, Millar AJ, Webb AAR (2005) Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309:630–633PubMedCrossRefGoogle Scholar
  15. Dodd AN, Dalchau N, Gardner MJ, Baek SJ, Webb AAR (2014a) The circadian clock has transient plasticity of period and is required for timing of nocturnal processes in Arabidopsis. New Phytol 201:168–179PubMedCrossRefGoogle Scholar
  16. Dodd AN, Kusakina J, Hall A, Gould PD, Hanaoka M (2014b) The circadian regulation of photosynthesis. Photosynth Res 119:181–190PubMedCrossRefGoogle Scholar
  17. Dong GG, Yang Q, Wang Q, Kim YI, Wood TL, Osteryoung KW, van Oudenaarden A, Golden SS (2010) Elevated ATPase activity of KaiC applies a circadian checkpoint on cell division in Synechococcus elongatus. Cell 140:529–539PubMedPubMedCentralCrossRefGoogle Scholar
  18. Dornbusch T, Michaud O, Xenarios I, Fankhauser C (2014) Differentially phased leaf growth and movements in Arabidopsis depend on coordinated circadian and light regulation. Plant Cell 26:3911–3921PubMedPubMedCentralCrossRefGoogle Scholar
  19. Dowson-Day MJ, Millar AJ (1999) Circadian dysfunction causes aberrant hypocotyl elongation patterns in Arabidopsis. Plant J 17:63–71PubMedCrossRefGoogle Scholar
  20. Endo M, Mochizuki N, Suzuki T, Nagatani A (2007) CRYPTOCHROME2 in vascular bundles regulates flowering in Arabidopsis. Plant Cell 19:84–93PubMedPubMedCentralCrossRefGoogle Scholar
  21. Endo M, Tanigawa Y, Murakami T, Araki T, Nagatani A (2013) PHYTOCHROME-DEPENDENT LATE-FLOWERING accelerates flowering through physical interactions with phytochrome B and CONSTANS. Proc Natl Acad Sci USA 110:18017–18022PubMedPubMedCentralCrossRefGoogle Scholar
  22. Endo M, Shimizu H, Nohales MA, Araki T, Kay SA (2014) Tissue-specific clocks in Arabidopsis show asymmetric coupling. Nature 515:419–422PubMedPubMedCentralCrossRefGoogle Scholar
  23. Endo M, Araki T, Nagatani A (2016) Tissue-specific regulation of flowering by photoreceptors. Cell Mol Life Sci 73:829–839PubMedCrossRefGoogle Scholar
  24. Engelmann W, Simon K, Phen CJ (1992) Leaf movement rhythm in Arabidopsis thaliana. Z Naturforsch C 47:925–928Google Scholar
  25. Ezer D, Jung JH, Lan H, Biswas S, Gregoire L, Box MS, Charoensawan V, Cortijo S, Lai XL, Stockle D, Zubieta C, Jaeger KE, Wigge PA (2017) The evening complex coordinates environmental and endogenous signals in Arabidopsis. Nat Plants 3:17087Google Scholar
  26. Feng SH, Martinez C, Gusmaroli G, Wang Y, Zhou JL, Wang F, Chen LY, Yu L, Iglesias-Pedraz JM, Kircher S, Schafer E, Fu XD, Fan LM, Deng XW (2008) Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature 451:475–479PubMedPubMedCentralCrossRefGoogle Scholar
  27. Fenske MP, Imaizumi T (2016) Circadian rhythms in floral scent emission. Front Plant Sci 7:462Google Scholar
  28. Fenske MP, Hazelton KDH, Hempton AK, Shim JS, Yamamoto BM, Riffell JA, Imaizumi T (2015) Circadian clock gene LATE ELONGATED HYPOCOTYL directly regulates the timing of floral scent emission in Petunia. Proc Natl Acad Sci USA 112:9775–9780PubMedPubMedCentralCrossRefGoogle Scholar
  29. Fernandez SR, Wagner E (1994) A new method of measurement and analysis of the stem extension growth rate to demonstrate complete synchronization of Chenopodium rubrum plants by environmental conditions. J Plant Physiol 144:362–369CrossRefGoogle Scholar
  30. Graf A, Smith AM (2011) Starch and the clock: the dark side of plant productivity. Trends Plant Sci 16:169–175PubMedCrossRefGoogle Scholar
  31. Graf A, Schlereth A, Stitt M, Smith AM (2010) Circadian control of carbohydrate availability for growth in Arabidopsis plants at night. Proc Natl Acad Sci USA 107:9458–9463PubMedPubMedCentralCrossRefGoogle Scholar
  32. Gray JA, Shalit-Kaneh A, Chu DN, Hsu PY, Harmer SL (2017) The REVEILLE clock genes inhibit growth of juvenile and adult plants by control of cell size. Plant Physiol 173:2308–2322PubMedPubMedCentralCrossRefGoogle Scholar
  33. Green RM, Tingay S, Wang ZY, Tobin EM (2002) Circadian rhythms confer a higher level of fitness to Arabidopsis plants. Plant Physiol 129:576–584PubMedPubMedCentralCrossRefGoogle Scholar
  34. Greenham K, Lou P, Puzey JR, Kumar G, Arnevik C, Farid H, Willis JH, McClung CR (2017) Geographic variation of plant circadian clock function in natural and agricultural settings. J Biol Rhythms 32:26–34PubMedCrossRefGoogle Scholar
  35. Harmer SL, Hogenesch LB, Straume M, Chang HS, Han B, Zhu T, Wang X, Kreps JA, Kay SA (2000) Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290:2110–2113PubMedCrossRefGoogle Scholar
  36. Harmer SL, Panda S, Kay SA (2001) Molecular bases of circadian rhythms. Annu Rev Cell Dev Biol 17:215–253PubMedCrossRefGoogle Scholar
  37. Hartwell J, Gill A, Nimmo GA, Wilkins MB, Jenkins GL, Nimmo HG (1999) Phosphoenolpyruvate carboxylase kinase is a novel protein kinase regulated at the level of expression. Plant J 20:333–342PubMedCrossRefGoogle Scholar
  38. Hennessey TL, Freeden AL, Field CB (1993) Environmental effects of circadian rhythms in photosynthesis and stomatal opening. Planta 189:369–376PubMedCrossRefGoogle Scholar
  39. Imaizumi T, Schultz TF, Harmon FG, Ho LA, Kay SA (2005) FKF1F-BOX protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science 309:293–297PubMedCrossRefGoogle Scholar
  40. Imoto Y, Yoshida Y, Yagisawa F, Kuroiwa H, Kuroiwa T (2011) The cell cycle, including the mitotic cycle and organelle division cycles, as revealed by cytological observations. J Electron Microsc 60:S117–S136CrossRefGoogle Scholar
  41. Inoue K, Araki T, Endo M (2017) Integration of input signals into the gene network in the plant circadian clock. Plant Cell Physiol 58:977–982CrossRefGoogle Scholar
  42. Jang S, Marchal V, Panigrahi KC, Wenkel S, Soppe W, Deng XW, Valverde F, Coupland G (2008) Arabidopsis COP1 shapes the temporal pattern of CO accumulation conferring a photoperiodic flowering response. EMBO J 27:1277–1288PubMedPubMedCentralCrossRefGoogle Scholar
  43. Johnson CH (2010) Circadian clocks and cell division What’s the pacemaker? Cell Cycle 9:3864–3873PubMedPubMedCentralCrossRefGoogle Scholar
  44. Jones AR, Forero-Vargas M, Withers SP, Smith RS, Traas J, Dewitte W, Murray JAH (2017) Cell-size dependent progression of the cell cycle creates homeostasis and flexibility of plant cell size. Nat Commun 8:15060Google Scholar
  45. Kamioka M, Takao S, Suzuki T, Taki K, Higashiyama T, Kinoshita T, Nakamichi N (2016) Direct repression of evening genes by CIRCADIAN CLOCK-ASSOCIATED1 in the Arabidopsis circadian clock. Plant Cell 28:696–711PubMedPubMedCentralCrossRefGoogle Scholar
  46. Kirchenbauer D, Viczian A, Adam E, Hegedus Z, Klose C, Leppert M, Hiltbrunner A, Kircher S, Schafer E, Nagy F (2016) Characterization of photomorphogenic responses and signaling cascades controlled by phytochrome—a expressed in different tissues. New Phytol 211:584–598PubMedCrossRefGoogle Scholar
  47. Kolosova N, Gorenstein N, Kish CM, Dudareva N (2001) Regulation of circadian methyl benzoate emission in diurnally and nocturnally emitting plants. Plant Cell 13:2333–2347PubMedPubMedCentralCrossRefGoogle Scholar
  48. Kondo T, Mori T, Lebedeva NV, Aoki S, Ishiura M, Golden SS (1997) Circadian rhythms in rapidly dividing cyanobacteria. Science 275:224–227PubMedCrossRefGoogle Scholar
  49. Laubinger S, Marchal V, Gentilhomme J, Wenkel S, Adrian J, Jang S, Kulajta C, Braun H, Coupland G, Hoecker U (2006) Arabidopsis SPA proteins regulate photoperiodic flowering and interact with the floral inducer CONSTANS to regulate its stability. Development 133:3213–3222PubMedCrossRefGoogle Scholar
  50. Lazaro A, Mouriz A, Pineiro M, Jarillo JA (2015) Red light-mediated degradation of CONSTANS by the E3 ubiquitin ligase HOS1 regulates photoperiodic flowering in Arabidopsis. Plant Cell 27:2437–2454PubMedPubMedCentralCrossRefGoogle Scholar
  51. Lecharny A, Wagner E (1984) Stem extension rate in light-grown plants—evidence for an endogenous circadian rhythm in Chenopodium rubrum. Physiol Plant 60:437–443CrossRefGoogle Scholar
  52. Leivar P, Monte E (2014) PIFs: systems integrators in plant development. Plant Cell 26:56–78PubMedPubMedCentralCrossRefGoogle Scholar
  53. Liu TL, Newton L, Liu MJ, Shiu SH, Farre EM (2016) A G-box-like motif is necessary for transcriptional regulation by circadian pseudo-response regulators in Arabidopsis. Plant Physiol 170:528–539PubMedCrossRefGoogle Scholar
  54. Lorrain S, Allen T, Duek PD, Whitelam GC, Fankhauser C (2008) Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors. Plant J 53:312–323PubMedCrossRefGoogle Scholar
  55. Lou P, Xie Q, Xu X, Edwards CE, Brock MT, Weinig C, McClung CR (2011) Genetic architecture of the circadian clock and flowering time in Brassica rapa. Theor Appl Genet 123:397–409PubMedCrossRefGoogle Scholar
  56. Lu Y, Gehan JP, Sharkey TD (2005) Daylength and circadian effects on starch degradation and maltose metabolism. Plant Physiol 138:2280–2291PubMedPubMedCentralCrossRefGoogle Scholar
  57. Martinocatt S, Ort DR (1992) Low-temperature interrupts circadian regulation of transcriptional activity in chilling-sensitive plants. Proc Natl Acad Sci USA 89:3731–3735CrossRefGoogle Scholar
  58. Matsuzaki J, Kawahara Y, Izawa T (2015) Punctual transcriptional regulation by the rice circadian clock under fluctuating field conditions. Plant Cell 27:633–648PubMedPubMedCentralCrossRefGoogle Scholar
  59. McClung CR (2006) Plant circadian rhythms. Plant Cell 18:792–803PubMedPubMedCentralCrossRefGoogle Scholar
  60. McClung CR, Hsu M, Painter JE, Gagne JM, Karlsberg SD, Salome PA (2000) Integrated temporal regulation of the photorespiratory pathway. Circadian regulation of two arabidopsis genes encoding serine hydroxymethyltransferase. Plant Physiol 123:381–391PubMedPubMedCentralCrossRefGoogle Scholar
  61. Michael TP, Salome PA, Yu HJ, Spencer TR, Sharp EL, McPeek MA, Alonso JM, Ecker JR, McClung CR (2003) Enhanced fitness conferred by naturally occurring variation in the circadian clock. Science 302:1049–1053PubMedCrossRefGoogle Scholar
  62. Miyagishima SY, Fujiwara T, Sumiya N, Hirooka S, Nakano A, Kabeya Y, Nakamura M (2014) Translation-independent circadian control of the cell cycle in a unicellular photosynthetic eukaryote. Nat Commun 5:3807Google Scholar
  63. Mori T, Binder B, Johnson CH (1996) Circadian gating of cell division in cyanobacteria growing with average doubling times of less than 24 h. Proc Natl Acad Sci USA 93:10183–10188PubMedPubMedCentralCrossRefGoogle Scholar
  64. Nagel DH, Doherty CJ, Pruneda-Paz JL, Schmitz RJ, Ecker JR, Kay SA (2015) Genome-wide identification of CCA1 targets uncovers an expanded clock network in Arabidopsis. Proc Natl Acad Sci USA 112:E4802–E4810PubMedPubMedCentralCrossRefGoogle Scholar
  65. Nakamichi N (2015) Adaptation to the local environment by modifications of the photoperiod response in crops. Plant Cell Physiol 56:594–604PubMedCrossRefGoogle Scholar
  66. Nakamichi N, Kiba T, Kamioka M, Suzuki T, Yamashino T, Higashiyama T, Sakakibara H, Mizuno T (2012) Transcriptional repressor PRR5 directly regulates clock-output pathways. Proc Natl Acad Sci USA 109:17123–17128PubMedPubMedCentralCrossRefGoogle Scholar
  67. Nieto C, Lopez-Salmeron V, Daviere JM, Prat S (2015) ELF3-PIF4 interaction regulates plant growth independently of the evening complex. Curr Biol 25:187–193PubMedCrossRefGoogle Scholar
  68. Niinuma K, Someya N, Kimura M, Yamaguchi I, Hamamoto H (2005) Circadian rhythm of circumnutation in inflorescence stems of Arabidopsis. Plant Cell Physiol 46:1423–1427PubMedCrossRefGoogle Scholar
  69. Nimmo HG (1998) Circadian regulation of a plant protein kinase. Chronobiol Int 15:109–118PubMedCrossRefGoogle Scholar
  70. Nimmo HG (2000) The regulation of phosphoenolpyruvate carboxylase in CAM plants. Trends Plant Sci 5:75–80PubMedCrossRefGoogle Scholar
  71. Niwa Y, Yamashino T, Mizuno T (2009) The circadian clock regulates the photoperiodic response of hypocotyl elongation through a coincidence mechanism in Arabidopsis thaliana. Plant Cell Physiol 50:838–854PubMedCrossRefGoogle Scholar
  72. Nohales MA, Kay SA (2016) Molecular mechanisms at the core of the plant circadian oscillator. Nat Struct Mol Biol 23:1061–1069PubMedCrossRefGoogle Scholar
  73. Nozue K, Covington MF, Duek PD, Lorrain S, Fankhauser C, Harmer SL, Maloof JN (2007) Rhythmic growth explained by coincidence between internal and external cues. Nature 448:358–361PubMedCrossRefGoogle Scholar
  74. Nusinow DA, Helfer A, Hamilton EE, King JJ, Imaizumi T, Schultz TF, Farre EM, Kay SA (2011) The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature 475:398–402PubMedPubMedCentralCrossRefGoogle Scholar
  75. Overland L (1960) Endogenous rhythm in opening and odor of flowers of Cestrum nocturnum. Am J Bot 47:378–382CrossRefGoogle Scholar
  76. Penfield S, Hall A (2009) A role for multiple circadian clock genes in the response to signals that break seed dormancy in Arabidopsis. Plant Cell 21:1722–1732PubMedPubMedCentralCrossRefGoogle Scholar
  77. Pesti J (1976) Daily fluctuations in sugar content of nectar and periodicity of secretion in Compositae. Acta Agron Hung 25:5–17Google Scholar
  78. Pilgrim ML, Mcclung CR (1993) Differential involvement of the circadian clock in the expression of genes required for ribulose-1,5-bisphosphate carboxylase oxygenase synthesis, assembly, and activation in Arabidopsis thaliana. Plant Physiol 103:553–564PubMedPubMedCentralCrossRefGoogle Scholar
  79. Polko JK, van Zanten M, van Rooij JA, Maree AFM, Voesenek LACJ, Peeters AJM, Pierik R (2012) Ethylene-induced differential petiole growth in Arabidopsis thaliana involves local microtubule reorientation and cell expansion. New Phytol 193:339–348PubMedCrossRefGoogle Scholar
  80. Putterill J, Robson F, Lee K, Simon R, Coupland G (1995) The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc-finger transcription factors. Cell 80:847–857PubMedCrossRefGoogle Scholar
  81. Ranjan A, Fiene G, Fackendahl P, Hoecker U (2011) The Arabidopsis repressor of light signaling SPA1 acts in the phloem to regulate seedling de-etiolation, leaf expansion and flowering time. Development 138:1851–1862PubMedCrossRefGoogle Scholar
  82. Rauf M, Arif M, Fisahn J, Xue GP, Balazadeh S, Mueller-Roeber B (2013) NAC transcription factor SPEEDY HYPONASTIC GROWTH regulates flooding-induced leaf movement in Arabidopsis. Plant Cell 25:4941–4955PubMedPubMedCentralCrossRefGoogle Scholar
  83. Rawat R, Takahashi N, Hsu PY, Jones MA, Schwartz J, Salemi MR, Phinney BS, Harmer SL (2011) REVEILLE8 and PSEUDO-REPONSE REGULATOR5 form a negative feedback loop within the Arabidopsis circadian clock. PLoS Genet 7:e1001350PubMedPubMedCentralCrossRefGoogle Scholar
  84. Rugnone ML, Faigon Soverna A, Sanchez SE, Schlaen RG, Hernando CE, Seymour DK, Mancini E, Chernomoretz A, Weigel D, Mas P, Yanovsky MJ (2013) LNK genes integrate light and clock signaling networks at the core of the Arabidopsis oscillator. Proc Natl Acad Sci USA 110:12120–12125PubMedPubMedCentralCrossRefGoogle Scholar
  85. Salathia N, Lynn JR, Millar AJ, King GJ (2007) Detection and resolution of genetic loci affecting circadian period in Brassica oleracea. Theor Appl Genet 114:683–692PubMedCrossRefGoogle Scholar
  86. Salter MG, Franklin KA, Whitelam GC (2003) Gating of the rapid shade-avoidance response by the circadian clock in plants. Nature 426:680–683PubMedCrossRefGoogle Scholar
  87. Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland G (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288:1613–1616PubMedCrossRefGoogle Scholar
  88. Sawa M, Nusinow DA, Kay SA, Imaizumi T (2007) FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science 318:261–265PubMedPubMedCentralCrossRefGoogle Scholar
  89. Schaffer R, Landgraf J, Accerbi M, Simon V, Larson M, Wisman E (2001) Microarray analysis of diurnal and circadian-regulated genes in Arabidopsis. Plant Cell 13:113–123PubMedPubMedCentralCrossRefGoogle Scholar
  90. Sheerin DJ, Menon C, zur Oven-Krockhaus S, Enderle B, Zhu L, Johnen P, Schleifenbaum F, Stierhof YD, Huq E, Hiltbrunner A (2015) Light-activated phytochrome A and B interact with members of the SPA family to promote photomorphogenesis in Arabidopsis by reorganizing the COP1/SPA complex. Plant Cell 27:189–201PubMedPubMedCentralCrossRefGoogle Scholar
  91. Shim JS, Kubota A, Imaizumi T (2017) Circadian clock and photoperiodic flowering in Arabidopsis: CONSTANS is a hub for signal integration. Plant Physiol 173:5–15PubMedCrossRefGoogle Scholar
  92. Shimizu H, Katayama K, Koto T, Torii K, Araki T, Endo M (2015) Decentralized circadian clocks process thermal and photoperiodic cues in specific tissues. Nat Plants 1:15163PubMedCrossRefGoogle Scholar
  93. Siefritz F, Otto B, Bienert GP, van der Krol A, Kaldenhoff R (2004) The plasma membrane aquaporin NtAQP1 is a key component of the leaf unfolding mechanism in tobacco. Plant J 37:147–155PubMedCrossRefGoogle Scholar
  94. Slotte T, Holm K, McIntyre LM, Lagercrantz U, Lascoux M (2007) Differential expression of genes important for adaptation in Capsella bursa-pastoris (Brassicaceae). Plant Physiol 145:160–173PubMedPubMedCentralCrossRefGoogle Scholar
  95. Somers DE, Webb AAR, Pearson M, Kay SA (1998) The short-period mutant, toc1-1, alters circadian clock regulation of multiple outputs throughout development in Arabidopsis thaliana. Development 125:485–494PubMedGoogle Scholar
  96. Song YH, Smith RW, To BJ, Millar AJ, Imaizumi T (2012) FKF1 conveys timing information for CONSTANS stabilization in photoperiodic flowering. Science 336:1045–1049PubMedPubMedCentralCrossRefGoogle Scholar
  97. Stewart JL, Maloof JN, Nemhauser JL (2011) PIF genes mediate the effect of sucrose on seedling growth dynamics. PLoS One 6:e19894Google Scholar
  98. Stolarz M (2009) Circumnutation as a visible plant action and reaction: physiological, cellular and molecular basis for circumnutations. Plant Signal Behav 4:380–387PubMedPubMedCentralCrossRefGoogle Scholar
  99. Suarez-Lopez P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G (2001) CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410:1116–1120PubMedCrossRefGoogle Scholar
  100. Suzuki K, Ehara T, Osafune T, Kuroiwa H, Kawano S, Kuroiwa T (1994) Behavior of mitochondria, chloroplasts and their nuclei during the mitotic-cycle in the ultramicroalga Cyanidioschyzon merolae. Eur J Cell Biol 63:280–288PubMedGoogle Scholar
  101. Takahashi N, Hirata Y, Aihara K, Mas P (2015) A hierarchical multi-oscillator network orchestrates the Arabidopsis circadian system. Cell 163:148–159PubMedCrossRefGoogle Scholar
  102. Takase M, Mizoguchi T, Kozuka T, Tsukaya H (2013) The unique function of the Arabidopsis circadian clock gene PRR5 in the regulation of shade avoidance response. Plant Signal Behav 8:e23534PubMedCrossRefGoogle Scholar
  103. Thimann KV, Tan ZY, Park J (1992) Cycling of stomatal aperture in leaves of plants with crassulacean acid metabolism under constant conditions. Am J Bot 79:23–27CrossRefGoogle Scholar
  104. Tiwari SB, Shen Y, Chang HC, Hou YL, Harris A, Ma SF, McPartland M, Hymus GJ, Adam L, Marion C, Belachew A, Repetti PP, Reuber TL, Ratcliffe OJ (2010) The flowering time regulator CONSTANS is recruited to the FLOWERING LOCUS T promoter via a unique cis-element. New Phytol 187:57–66PubMedCrossRefGoogle Scholar
  105. Tukey HB, Ketellapper HJ (1963) Length of light-dark cycle and plant growth. Am J Bot 50:110–115CrossRefGoogle Scholar
  106. Uehlein N, Kaldenhoff R (2008) Aquaporins and plant leaf movements. Ann Bot 101:1–4PubMedCrossRefGoogle Scholar
  107. Valverde F, Mouradov A, Soppe W, Ravenscroft D, Samach A, Coupland G (2004) Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303:1003–1006PubMedCrossRefGoogle Scholar
  108. van Doorn WG, Kamdee C (2014) Flower opening and closure: an update. J Exp Bot 65:5749–5757PubMedCrossRefGoogle Scholar
  109. van Doorn WG, van Meeteren U (2003) Flower opening and closure: a review. J Exp Bot 54:1801–1812PubMedCrossRefGoogle Scholar
  110. Verdonk JC, de Vos CHR, Verhoeven HA, Haring MA, van Tunen AJ, Schuurink RC (2003) Regulation of floral scent production in petunia revealed by targeted metabolomics. Phytochemistry 62:997–1008PubMedCrossRefGoogle Scholar
  111. Whippo CW, Hangarter RP (2009) The “sensational” power of movement in plants: a Darwinian system for studying the evolution of behavior. Am J Bot 96:2115–2127PubMedCrossRefGoogle Scholar
  112. Wu JF, Tsai HL, Joanito I, Wu YC, Chang CW, Li YH, Wang Y, Hong JC, Chu JW, Hsu CP, Wu SH (2016) LWD-TCP complex activates the morning gene CCA1 in Arabidopsis. Nat Commun 7:13181Google Scholar
  113. Yang Q, Pando BF, Dong GG, Golden SS, van Oudenaarden A (2010) Circadian gating of the cell cycle revealed in single cyanobacterial cells. Science 327:1522–1526PubMedPubMedCentralCrossRefGoogle Scholar
  114. Yanovsky MJ, Izaguirre M, Wagmaister JA, Gatz C, Jackson SD, Thomas B, Casal JJ (2000) Phytochrome A resets the circadian clock and delays tuber formation under long days in potato. Plant J 23:223–232PubMedCrossRefGoogle Scholar
  115. Zhong HH, Painter JE, Salome PA, Straume M, McClung CR (1998) Imbibition, but not release from stratification, sets the circadian clock in Arabidopsis seedlings. Plant Cell 10:2005–2017PubMedPubMedCentralCrossRefGoogle Scholar
  116. Zuo Z, Liu H, Liu B, Liu X, Lin C (2011) Blue light-dependent interaction of CRY2 with SPA1 regulates COP1 activity and floral initiation in Arabidopsis. Curr Biol 21:841–847PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan KK 2017

Authors and Affiliations

  1. 1.Graduate School of BiostudiesKyoto UniversityKyotoJapan

Personalised recommendations