Journal of Plant Research

, Volume 130, Issue 5, pp 909–927 | Cite as

Enhanced photosynthetic capacity increases nitrogen metabolism through the coordinated regulation of carbon and nitrogen assimilation in Arabidopsis thaliana

  • Kumi Otori
  • Noriaki Tanabe
  • Toshiki Maruyama
  • Shigeru Sato
  • Shuichi Yanagisawa
  • Masahiro Tamoi
  • Shigeru Shigeoka
Regular Paper


Plant growth and productivity depend on interactions between the metabolism of carbon and nitrogen. The sensing ability of internal carbon and nitrogen metabolites (the C/N balance) enables plants to regulate metabolism and development. In order to investigate the effects of an enhanced photosynthetic capacity on the metabolism of carbon and nitrogen in photosynthetically active tissus (source leaves), we herein generated transgenic Arabidopsis thaliana plants (ApFS) that expressed cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase in their chloroplasts. The phenotype of ApFS plants was indistinguishable from that of wild-type plants at the immature stage. However, as plants matured, the growth of ApFS plants was superior to that of wild-type plants. Starch levels were higher in ApFS plants than in wild-type plants at 2 and 5 weeks. Sucrose levels were also higher in ApFS plants than in wild-type plants, but only at 5 weeks. On the other hand, the contents of various free amino acids were lower in ApFS plants than in wild-type plants at 2 weeks, but were similar at 5 weeks. The total C/N ratio was the same in ApFS plants and wild-type plants, whereas nitrite levels increased in parallel with elevations in nitrate reductase activity at 5 weeks in ApFS plants. These results suggest that increases in the contents of photosynthetic intermediates at the early growth stage caused a temporary imbalance in the free-C/free-N ratio and, thus, the feedback inhibition of the expression of genes involved in the Calvin cycle and induction of the expression of those involved in nitrogen metabolism due to supply deficient free amino acids for maintenance of the C/N balance in source leaves of ApFS plants.


Biomass Calvin cycle C/N balance Fructose-1,6-bisphosphatase Photosynthesis Sedoheptulose-1,7-bisphosphatase 



This work was supported by JST CREST Grant Number JPMJCR12B3 (S.S.) and JPMJCR15O5 (S.Y.), Japan.

Supplementary material

10265_2017_950_MOESM1_ESM.pdf (746 kb)
Supplementary material 1 (PDF 745 KB)


  1. Aronsson H, Jarvis P (2002) A simple method for isolating import-competent Arabidopsis chloroplasts. FEBS Lett 529:215–220CrossRefPubMedGoogle Scholar
  2. Baroja-Fernández E, Muñoz FJ, Li J, Bahaji A, Almagro G, Montero M, Etxeberria E, Hidalgo M, Sesma MT, Pozueta-Romero J (2012) Sucrose synthase activity in the sus1/sus2/sus3/sus4 Arabidopsis mutant is sufficient to support normal cellulose and starch production. Proc Natl Acad Sci USA 109:321–326CrossRefPubMedGoogle Scholar
  3. Baud S, Vaultier MN, Rochat C (2004) Structure and expression profile of the sucrose synthase multigene family in Arabidopsis. J Exp Bot 55:397–409CrossRefPubMedGoogle Scholar
  4. Bieniawska Z, Paul Barratt DH, Garlick AP, Thole V, Kruger NJ, Martin C, Zrenner R, Smith AM (2007) Analysis of the sucrose synthase gene family in Arabidopsis. Plant J 49:810–828CrossRefPubMedGoogle Scholar
  5. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743CrossRefPubMedGoogle Scholar
  6. Coruzzi G, Bush DR (2001) Nitrogen and carbon nutrient and metabolite signaling in plants. Plant Physiol 125:61–64CrossRefPubMedPubMedCentralGoogle Scholar
  7. Coruzzi GM, Zhou L (2001) Carbon and nitrogen sensing and signaling in plants: emerging ‘matrix effects’. Curr Opin Plant Biol 4:247–253CrossRefPubMedGoogle Scholar
  8. Crevillén P, Ballicora MA, Mérida A, Preiss J, Romero JM (2003) The different large subunit isoforms of Arabidopsis thaliana ADP-glucose pyrophosphorylase confer distinct kinetic and regulatory properties to the heterotetrameric enzyme. J Biol Chem 278:28508–28515CrossRefPubMedGoogle Scholar
  9. Crevillén P, Ventriglia T, Pinto F, Orea A, Merida A, Romero JM (2005) Differential pattern of expression and sugar regulation of Arabidopsis thaliana ADP-Glc pyrophosphorylase-encoding genes. J Biol Chem 280:8143–8149CrossRefPubMedGoogle Scholar
  10. Dellero Y, Lamothe-Sibold M, Jossier M, Hodges M (2015) Arabidopsis thaliana ggt1 photorespiratory mutants maintain leaf carbon/nitrogen balance by reducing RuBisCO content and plant growth. Plant J 83:1005–1018CrossRefPubMedGoogle Scholar
  11. Ferrario-Méry S, Bouvet M, Leleu O, Savino G, Hodges M, Meyer C (2005) Physiological characterization of Arabidopsis mutants affected in the expression of the putative regulatory protein PII. Planta 223:28–39CrossRefPubMedGoogle Scholar
  12. Foyer CH, Lescure JC, Lefebvre C, Morot-Gaudry JF, Vincentz M, Vaucheret H (1994) Adaptations of photosynthetic electron transport, carbon assimilation, and carbon partitioning in transgenic Nicotiana plumbaginifolia plants to changes in nitrate reductase activity. Plant Physiol 104:171–178CrossRefPubMedPubMedCentralGoogle Scholar
  13. Fritz C, Mueller C, Matt P, Feil R, Stitt M (2006) Impact of the C–N status on the amino acid profile in tobacco source leaves. Plant Cell Environ 29:2055–2076CrossRefPubMedGoogle Scholar
  14. Fulton DC, Stettler M, Mettler T, Vaughan CK, Li J, Francisco P, Gil M, Reinhold H, Eicke S, Messerli G, Dorken G, Halliday K, Smith AM, Smith SM, Zeeman SC (2008) Beta-AMYLASE4, a noncatalytic protein required for starch breakdown, acts upstream of three active beta-amylases in Arabidopsis chloroplasts. Plant Cell 20:1040–1058CrossRefPubMedPubMedCentralGoogle Scholar
  15. Galtier N, Foyer C, Murchie E, Aired R, Quick P, Voelker T, Thépenier C, Lascève G, Betsche T (1995) Effects of light and atmospheric carbon dioxide enrichment on photosynthesis and carbon partitioning in the leaves of tomato (Lycopersicon esculentum L.) plants over-expressing sucrose phosphate synthase. J Exp Bot 46:1335–1344CrossRefGoogle Scholar
  16. Gaufichon L, Masclaux-Daubresse C, Tcherkez G, Reisdorf-Cren M, Sakakibara Y, Hase T, Clément G, Avice JC, Grandjean O, Marmagne A, Boutet-Mercey S, Azzopardi M, Soulay F, Suzuki A (2013) Arabidopsis thaliana ASN2 encoding asparagine synthetase is involved in the control of nitrogen assimilation and export during vegetative growth. Plant Cell Environ 36:328–342CrossRefPubMedGoogle Scholar
  17. Gutiérrez RA, Lejay LV, Dean A, Chiaromonte F, Shasha DE, Coruzzi GM (2007) Qualitative network models and genome-wide expression data define carbon/nitrogen-responsive molecular machines in Arabidopsis. Genome Biol 8:R7CrossRefPubMedPubMedCentralGoogle Scholar
  18. Hachiya T, Sugiura D, Kojima M, Sato S, Yanagisawa S, Sakakibara H, Terashima I, Noguchi K (2014) High CO2 triggers preferential root growth of Arabidopsis thaliana via two distinct systems under low pH and low N stresses. Plant Cell Physiol 55:269–280CrossRefPubMedPubMedCentralGoogle Scholar
  19. Harrison EP, Olcer H, Lloyd JC, Long SP, Raines CA (2001) Small decreases in SBPase cause a linear decline in the apparent RuBP regeneration rate, but do not affect Rubisco carboxylation capacity. J Exp Bot 52:1779–1784CrossRefPubMedGoogle Scholar
  20. Ho CH, Lin SH, Hu HC, Tsay YF (2009) CHL1 functions as a nitrate sensor in plants. Cell 138:1184–1194CrossRefPubMedGoogle Scholar
  21. Hsieh MH, Lam HM, van de Loo FJ, Coruzzi G (1998) A PII-like protein in Arabidopsis: putative role in nitrogen sensing. Proc Natl Acad Sci USA 95:13965–13970CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hsu PK, Tsay YF (2013) Two phloem nitrate transporters, NRT1.11 and NRT1.12, are important for redistributing xylem-borne nitrate to enhance plant growth. Plant Physiol 163:844–856CrossRefPubMedPubMedCentralGoogle Scholar
  23. Ichikawa Y, Tamoi M, Sakuyama H, Maruta T, Ashida H, Yokota A, Shigeoka S (2010) Generation of transplastomic lettuce with enhanced growth and high yield. GM Crops 1:322–326CrossRefPubMedGoogle Scholar
  24. Igarashi D, Miwa T, Seki M, Kobayashi M, Kato T, Tabata S, Shinozaki K, Ohsumi C (2003) Identification of photorespiratory glutamate:glyoxylate aminotransferase (GGAT) gene in Arabidopsis. Plant J 33:975–987CrossRefPubMedGoogle Scholar
  25. Ishikawa T, Takeda T, Kohno H, Shigeoka S (1996) Molecular characterization of Euglena ascorbate peroxidase using monoclonal antibody. Biochim Biophys Acta 21:69–75CrossRefGoogle Scholar
  26. Jeong E-Y, Seo PJ, Woo JC, Park C-M (2015) AKIN10 delays flowering by interactivating IDD8 transcription factor through protein phosphorylation in Arabidopsis. BMC Plant Biol 15:110CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kanda Y (2013) Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant 48:452–458CrossRefPubMedGoogle Scholar
  28. Kang J, Turano FJ (2003) The putative glutamate receptor 1.1 (AtGLR1.1) functions as a regulator of carbon and nitrogen. Bone Marrow Transplant 100:6872–6877Google Scholar
  29. Koch KE (1996) Carbohydrate-modulated gene expression in plants. Ann Rev Plant Physiol Plant Mol Biol 47:509–540CrossRefGoogle Scholar
  30. Konishi M, Yanagisawa S (2011) The regulatory region controlling the nitrate-responsive expression of a nitrate reductase gene, NIA1, in Arabidopsis. Plant Cell Physiol 52:824–836CrossRefPubMedGoogle Scholar
  31. Konishi M, Yanagisawa S (2014) Emergence of a new step towards understanding the molecular mechanisms underlying nitrate-regulated gene expression. J Exp Bot 65:5589–5600CrossRefPubMedGoogle Scholar
  32. Krapp A, David LC, Chardin C, Girin T, Marmagne A, Leprince AS, Chaillou S, Ferrario-Méry S, Meyer C, Daniel-Vedele F (2014) Nitrate transport and signaling in Arabidopsis. J Exp Bot 65:789–798CrossRefPubMedGoogle Scholar
  33. Lam HM, Peng SS, Coruzzi GM (1994) Metabolic regulation of the gene encoding glutamine-dependent asparagine synthetase in Arabidopsis thaliana. Plant Physiol 106:1347–1357CrossRefPubMedPubMedCentralGoogle Scholar
  34. Lam HM, Hsieh MH, Coruzzi G (1998) Reciprocal regulation of distinct asparagine synthetase genes by light and metabolites in Arabidopsis thaliana. Plant J 16:345–353CrossRefPubMedGoogle Scholar
  35. Lefebvre S, Lawson T, Fryer M, Zakhleniuk OV, Lloyd JC, Raines CA (2005) Increased sedoheptulose-1,7-bisphosphatase activity in transgenic tobacco plants stimulates potosynthesis and growth from an early stage in development. Plant Physiol 138:451–460CrossRefPubMedPubMedCentralGoogle Scholar
  36. Lillo C (2008) Signalling cascades integrating light-enhanced nitrate metabolism. Biochem J 415:11–19CrossRefPubMedGoogle Scholar
  37. Liu XL, Yu HD, Guan Y, Li JK, Guo FQ (2012) Carbonylation and loss-of-function analyses of SBPase reveal its metabolic interface role in oxidative stress, carbon assimilation, and multiple aspects of growth and development in Arabidopsis. Mol Plant 5:1082–1099CrossRefPubMedGoogle Scholar
  38. Lu Y, Sasaki Y, Li X, Mori IC, Matsuura T, Hirayama T, Sato T, Yamaguchi J (2015) ABI1 regulates carbon/nitrogen-nutrient signal transduction independent of ABA biosynthesis and canonical ABA signaling pathways in Arabidopsis. J Exp Bot 66:2763–2771CrossRefPubMedPubMedCentralGoogle Scholar
  39. Maruta T, Otori K, Tabuchi T, Tanabe N, Tamoi M, Shigeoka S (2010) New insights into the regulation of greening and carbon–nitrogen balance by sugar metabolism through a plastidic invertase. Plant Signal Behav 5:1131–1133CrossRefPubMedPubMedCentralGoogle Scholar
  40. Miyagawa Y, Tamoi M, Shigeoka S (2001) Overexpression of a cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase in tobacco enhances photosynthesis and growth. Nat Biotechnol 19:965–969CrossRefPubMedGoogle Scholar
  41. Monroe JD, Storm AR, Badley EM, Lehman MD, Platt SM, Saunders LK, Schmitz JM, Torres CE (2014) β-Amylase1 and β-amylase3 are plastidic starch hydrolases in Arabidopsis that seem to be adapted for different thermal, pH, and stress conditions. Plant Physiol 166:1748–1763CrossRefPubMedPubMedCentralGoogle Scholar
  42. Okamoto M, Vidmar JJ, Glass AD (2003) Regulation of NRT1 and NRT2 gene families of Arabidopsis thaliana: responses to nitrate provision. Plant Cell Physiol 44:304–317CrossRefPubMedGoogle Scholar
  43. Rideout JW, Raper CD Jr, Miner GS (1992) Changes in ratio of soluble sugars and free amino nitrogen in the apical meristem during floral transition of tobacco. Int J Plant Sci 153:78–88CrossRefPubMedGoogle Scholar
  44. Rojas-González JA, Soto-Súarez M, García-Díez A, Romero-Puertas MC, Sandalio LM, Mérida A, Thormálen I, Geigenberger P, Serrato AJ, Sahrawy M (2015) Disruption of both chloroplastic and cytosolic FBPase genes results in a dwarf phenotype and important starch and metabolite changes in Arabidopsis thaliana. J Exp Bot 66:2673–2689CrossRefPubMedPubMedCentralGoogle Scholar
  45. Rosenthal DM, Locke AM, Khozaei M, Raines CA, Long SP, Ort DR (2011) Over-expressing the C3 photosynthesis cycle enzyme sedoheptulose-1-7 Bisphosphatase improves photosynthetic carbon gain and yield under fully open air CO2 fumigation (FACE). BMC Plant Biol 11:123CrossRefPubMedPubMedCentralGoogle Scholar
  46. Sato S, Yanagisawa S (2010) Capillary electrophoresis–electrospray ionization-mass spectrometry using fused-silica capillaries to profile anionic metabolites. Metabolomics 6:529–540CrossRefGoogle Scholar
  47. Sato S, Soga T, Nishioka T, Tomita M (2004) Simultaneous determination of the main metabolites in rice leaves using capillary electrophoresis mass spectrometry and capillary electrophoresis diode array detection. Plant J 40:151–163CrossRefPubMedGoogle Scholar
  48. Sato T, Maekawa S, Yasuda S, Sonoda Y, Katoh E, Ichikawa T, Nakazawa M, Seki M, Shinozaki K, Matsui M, Goto DB, Ikeda A, Yamaguchi J (2009) CNI1/ATL31, a RING-type ubiquitin ligase that functions in the carbon/nitrogen response for growth phase transition in Arabidopsis seedlings. Plant J 60:852–864CrossRefPubMedGoogle Scholar
  49. Scheible WR, González-Fontes A, Lauerer M, Müller-Rober B, Caboche M, Stitt M (1997) Nitrate acts as signal to induce organic acid metabolism and repress starch metabolism in tobacco. Plant Cell 9:783–798CrossRefPubMedPubMedCentralGoogle Scholar
  50. Sheen J (1990) Metabolic repression of transcription in higher plants. Plant Cell 2:1027–1038CrossRefPubMedPubMedCentralGoogle Scholar
  51. Shi J, Yi K, Liu Y, Xie L, Zhou Z, Chen Y, Hu Z, Zheng T, Liu R, Chen Y, Chen J (2015) Phosphoenolpyruvate carboxylase in Arabidopsis leaves plays a crucial role in carbon and nitrogen metabolism. Plant Physiol 167:671–681CrossRefPubMedPubMedCentralGoogle Scholar
  52. Simkin AJ, McAusland L, Headland LR, Lawson T, Raines CA (2015) Multigene manipulation of photosynthetic carbon assimilation increases CO2 fixation and biomass yield in tobacco. J Exp Bot 66:4075–4090CrossRefPubMedPubMedCentralGoogle Scholar
  53. Stadtman ER (2001) The story of glutamine synthetase regulation. J Biol Chem 276:44357–44364CrossRefPubMedGoogle Scholar
  54. Stitt M, Zeeman SC (2012) Starch turnover: pathways, regulation and role in growth. Curr Opin Plant Biol 5:282–292CrossRefGoogle Scholar
  55. Szydlowski N, Ragel P, Raynaud S, Lucas MM, Roldán I, Montero M, Muñoz FJ, Ovecka M, Bahaji A, Planchot V, Pozueta-Romero J, D’Hulst C, Mérida A (2009) Starch granule initiation in Arabidopsis requires the presence of either class IV or class III starch synthases. Plant Cell 21:2443–2457CrossRefPubMedPubMedCentralGoogle Scholar
  56. Tamoi M, Murakami A, Takeda T, Shigeoka S (1998) Acquisition of a new type of fructose-1,6-bisphosphatase with resistance to hydrogen peroxide in cyanobacteria: molecular characterization of the enzyme from Synechocystis PCC 6803. Biochim Biophys Acta 1383:232–244CrossRefPubMedGoogle Scholar
  57. Tamoi M, Tabuchi T, Demuratani M, Otori K, Tanabe N, Maruta T, Shigeoka S (2010) Point mutation of a plastidic invertase inhibits deveropment of the photosynthetic apparatus and enhances nitrate assimilation in sugar-treated Arabidopsis seedling. J Biol Chem 285:15399–15407CrossRefPubMedPubMedCentralGoogle Scholar
  58. Velez-Ramirez A, Ieperen WV, Vreugdenhil D, Millenaar FF (2011) Plants under continuous light. Trends in Plant Sci 16:310–318CrossRefGoogle Scholar
  59. Wang R, Guegler K, LaBrie ST, Crawford NM (2000) Genomic analysis of a nutrient response in Arabidopsis reveals diverse expression patterns and novel metabolic and potential regulatory genes induced by nitrate. Plant Cell 12:1491–1509CrossRefPubMedPubMedCentralGoogle Scholar
  60. Wang R, Okamoto M, Xing X, Crawford NM (2003) Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1,000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphate, iron, and sulfate metabolism. Plant Physiol 132:556–567CrossRefPubMedPubMedCentralGoogle Scholar
  61. Williams SP, Rangarajan P, Donahue JL, Hess JE, Gillaspy GE (2014) Regulation of sucrose non-fermenting related kinase 1 genes in Arabidopsis thaliana. Front Plant Sci 5:324PubMedPubMedCentralGoogle Scholar
  62. Yabuta Y, Tamoi M, Yamamoto K, Tomizawa K, Yokota A, Shigeoka S (2008) Molecular design of photosynthesis-elevated chloroplasts for mass accumulation of a foreign protein. Plant Cell Physiol 49:375–385CrossRefPubMedGoogle Scholar
  63. Yanagisawa S, Akiyama A, Kisaka H, Uchimiya H, Miwa T (2004) Metabolic engineering with Dof1 transcription factor in plants: Improved nitrogen assimilation and growth under low-nitrogen conditions. Proc Natl Acad Sci USA 101:7833–7838CrossRefPubMedPubMedCentralGoogle Scholar
  64. Zheng ZL (2009) Carbon and nitrogen nutrient balance signaling in plants. Plant Signal Behav 4:584–591CrossRefPubMedPubMedCentralGoogle Scholar
  65. Huang L, Zhang H, Zhang H, Deng XW, Wei N (2015) HY5 regulates nitrite reductase 1 (NIR1) and ammonium transporter1;2 (AMT1;2) in Arabidopsis seedlings. Plant Sci 238:330–339CrossRefPubMedPubMedCentralGoogle Scholar
  66. Marchive C, Roudier F, Castaings L, Bréhaut V, Blondet E, Colot V, Meyer C, Krapp A (2013) Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants. Nat Commun 4:1713CrossRefPubMedGoogle Scholar
  67. Price J (2004) Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis. Plant Cell 16(8):2128–2150CrossRefPubMedPubMedCentralGoogle Scholar
  68. Roldán I, Wattebled F, Mercedes Lucas M, Delvallé D, Planchot V, Jiménez S, Pérez R, Ball S, D'Hulst C, Mérida A (2007) The phenotype of soluble starch synthase IV defective mutants of Arabidopsis thaliana suggests a novel function of elongation enzymes in the control of starch granule formation. Plant J 49:492–504Google Scholar
  69. Ventriglia T, Kuhn ML, Ruiz MT, Ribeiro-Pedro M, Valverde F, Ballicora MA, Preiss J, Romero JM (2008) Two Arabidopsis ADP-glucose pyrophosphorylase large subunits (APL1 and APL2) are catalytic. Plant Physiol 148(1):65–76CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan 2017

Authors and Affiliations

  • Kumi Otori
    • 1
    • 2
  • Noriaki Tanabe
    • 1
    • 2
  • Toshiki Maruyama
    • 1
  • Shigeru Sato
    • 3
  • Shuichi Yanagisawa
    • 2
    • 3
  • Masahiro Tamoi
    • 1
    • 2
  • Shigeru Shigeoka
    • 1
    • 2
  1. 1.Department of Advanced Bioscience, Faculty of AgricultureKindai UniversityNaraJapan
  2. 2.Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology AgencyKawaguchiJapan
  3. 3.Biotechnology Research CenterThe University of TokyoBunkyo-kuJapan

Personalised recommendations