Journal of Plant Research

, Volume 129, Issue 5, pp 781–792 | Cite as

Metabolism of l-arabinose in plants

  • Toshihisa Kotake
  • Yukiko Yamanashi
  • Chiemi Imaizumi
  • Yoichi Tsumuraya
Current Topics in Plant Research

Abstract

l-Arabinose (l-Ara) is a plant-specific sugar accounting for 5–10 % of cell wall saccharides in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa). l-Ara occurs in pectic arabinan, rhamnogalacturonan II, arabinoxylan, arabinogalactan-protein (AGP), and extensin in the cell walls, as well as in glycosylated signaling peptides like CLAVATA3 and small glycoconjugates such as quercetin 3-O-arabinoside. This review focuses on recent advances towards understanding the generation of l-Ara and the metabolism of l-Ara-containing molecules in plants.

Keywords

l-Arabinose Cell wall polysaccharide Cytosol Golgi apparatus Nucleotide sugar 

Supplementary material

10265_2016_834_MOESM1_ESM.doc (38 kb)
Supplementary material 1 (DOC 38 kb)

References

  1. Akiyama Y, Mori M, Kato K (1980) 13C-NMR analysis of hydroxyl-proline arabinosides from Nicotiana tabacum. Agric Biol Chem 44:2487–2489Google Scholar
  2. Anders N, Wilkinson MD, Lovegrove A, Freeman J, Tryfona T, Pellny TK, Weimar T, Mortimer JC, Stott K, Baker JM, Defoin-Platel M, Shewry PR, Dupree P, Mitchell RAC (2012) Glycosyl transferases in family 61 mediate arabinofuranosyl transfer onto xylan in grasses. Proc Natl Acad Sci 109:989–993PubMedPubMedCentralCrossRefGoogle Scholar
  3. Arsovski AA, Popma TM, Haughn GW, Carpita NC, McCann MC, Western TL (2009) AtBXL1 encodes a bifunctional β-d-xylosidase/α-l-arabinofuranosidase required for pectic arabinan modification in Arabidopsis mucilage secretory cells. Plant Physiol 150:1219–1234PubMedPubMedCentralCrossRefGoogle Scholar
  4. Baldwin TC, Handford MG, Yuseff MI, Orellana A, Dupree P (2001) Identification and characterization of GONST1, a golgi-localized GDP-mannose transporter in Arabidopsis. Plant Cell 13:2283–2295PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bar-Peled M, O’Neill MA (2011) Plant nucleotide sugar formation, interconversion, and salvage by sugar recycling. Annu Rev Plant Biol 62:127–155PubMedCrossRefGoogle Scholar
  6. Bar-Peled M, Griffith CL, Doering TL (2001) Functional cloning and characterization of a UDP-glucuronic acid decarboxylase: the pathogenic fungus Cryptococcus neoformans elucidates UDP-xylose synthesis. Proc Natl Acad Sci 98:12003–12008PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bar-Peled M, Urbanowicz BR, O’Neill MA (2012) The synthesis and origin of the pectic polysaccharide rhamnogalacturonan II—insights from nucleotide sugar formation and diversity. Front Plant Sci 3:92PubMedPubMedCentralCrossRefGoogle Scholar
  8. Baud S, Vaultier MN, Rochat C (2004) Structure and expression profile of the sucrose synthase multigene family in Arabidopsis. J Exp Bot 55:397–409PubMedCrossRefGoogle Scholar
  9. Bollig K, Lamshöft M, Schweimer K, Marner FJ, Budzikiewicz H, Waffenschmidt S (2007) Structural analysis of linear hydroxyproline-bound O-glycans of Chlamydomonas reinhardtii-conservation of the inner core in Chlamydomonas and land plants. Carbohydr Res 342:2557–2566PubMedCrossRefGoogle Scholar
  10. Burget EG, Reiter W-D (1999) The mur4 mutant of Arabidopsis is partially defective in the de novo synthesis of uridine diphospho l-arabinose. Plant Physiol 121:383–389PubMedPubMedCentralCrossRefGoogle Scholar
  11. Burget EG, Verma R, Mølhøj M, Reiter W-D (2003) The biosynthesis of l-arabinose in plants: molecular cloning and characterization of a Golgi-localized UDP-d-xylose 4-epimerase encoded by the MUR4 gene of Arabidopsis. Plant Cell 15:523–531PubMedPubMedCentralCrossRefGoogle Scholar
  12. Campbell JA, Davies GJ, Bulone V, Henrissat B (1997) A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem J 326:929–939PubMedPubMedCentralCrossRefGoogle Scholar
  13. Cankar K, Kortstee A, Toonen MAJ, Wolters-Arts M, Houbein R, Mariani C, Ulvskov P, Jorgensen B, Schols HA, Visser RG, Trindade LM (2012) Pectic arabinan side chains are essential for pollen cell wall integrity during pollen development. Plant Biotechnol J 12:492–502CrossRefGoogle Scholar
  14. Cardini CE, Leloir LF, Chiriboga J (1955) The biosynthesis of sucrose. J Biol Chem 214:149–155PubMedGoogle Scholar
  15. Chávez Montes RA, Ranocha P, Martinez Y, Minic Z, Jouanin L, Marquis M, Saulnier L, Fulton LM, Cobbett CS, Bitton F, Renou JP, Jauneau A, Goffner D (2008) Cell wall modifications in Arabidopsis plants with altered α-l-arabinofuranosidase activity. Plant Physiol 147:63–77PubMedPubMedCentralCrossRefGoogle Scholar
  16. Coutinho PM, Deleury E, Davies GJ, Henrissat B (2003) An evolving hierarchical family classification for glycosyltransferases. J Mol Biol 328:307–317PubMedCrossRefGoogle Scholar
  17. Diet A, Link B, Seifert GJ, Schellenberg B, Wagner U, Pauly M, Reiter W-D, Ringli C (2006) The Arabidopsis root hair cell wall formation mutant lrx1 is suppressed by mutations in the RHM1 gene encoding a UDP-l-rhamnose synthase. Plant Cell 18:1630–1641PubMedPubMedCentralCrossRefGoogle Scholar
  18. Dolezal O, Cobbett CS (1991) Arabinose kinase-deficient mutant of Arabidopsis thaliana. Plant Physiol 96:1255–1260PubMedPubMedCentralCrossRefGoogle Scholar
  19. Domozych DS, Sørensen I, Willats WG (2009) The distribution of cell wall polymers during antheridium development and spermatogenesis in the Charophycean green alga, Chara corallina. Ann Bot 104:1045–1056PubMedPubMedCentralCrossRefGoogle Scholar
  20. Domozych DS, Ciancia M, Fangel JU, Mikkelsen MD, Ulvskov P, Willats WG (2012) The cell walls of green algae: a journey through evolution and diversity. Front Plant Sci 3:82PubMedPubMedCentralCrossRefGoogle Scholar
  21. Drakakaki G, Zabotina O, Delgado I, Robert S, Keegstra K, Raikhel N (2006) Arabidopsis reversibly glycosylated polypeptides 1 and 2 are essential for pollen development. Plant Physiol 142:1480–1492PubMedPubMedCentralCrossRefGoogle Scholar
  22. Ebert B, Rautengarten C, Guo X, Xiong G, Stonebloom S, Smith-Moritz AM, Herter T, Chan LJG, Adams PD, Petzold CJ, Pauly M, Willats WGT, Heazlewood JL, Scheller HV (2015) Identification and characterization of a Golgi-localized UDP-xylose transporter family from Arabidopsis. Plant Cell 27:1218–1227PubMedPubMedCentralCrossRefGoogle Scholar
  23. Fujita K, Takashi Y, Obuchi E, Kitahara K, Suganuma T (2014) Characterization of a novel β-l-arabinofuranosidase in Bifidobacterium longum: functional elucidation of a DUF1680 protein family member. J Biol Chem 289:5240–5249PubMedPubMedCentralCrossRefGoogle Scholar
  24. Geserick C, Tenhaken R (2013) UDP-sugar pyrophosphorylase is essential for arabinose and xylose recycling, and is required during vegetative and reproductive growth in Arabidopsis. Plant J 74:239–247PubMedPubMedCentralCrossRefGoogle Scholar
  25. Grabber JH, Hatfield RD, Ralph J, Zon J, Amrhein N (1995) Ferulate cross-linking in cell walls isolated from maize cell suspensions. Phytochemistry 40:1077–1082CrossRefGoogle Scholar
  26. Gu X, Bar-Peled M (2004) The biosynthesis of UDP-galacturonic acid in plants. Functional cloning and characterization of Arabidopsis UDP-d-glucuronic acid 4-epimerase. Plant Physiol 136:4256–4264PubMedPubMedCentralCrossRefGoogle Scholar
  27. Gy I, Aubourg S, Sherson S, Cobbett CS, Cheron A, Kreis M, Lecharny A (1998) Analysis of a 14-kb fragment containing a putative cell wall gene and a candidate for the ARA1, arabinose kinase, gene from chromosome IV of Arabidopsis thaliana. Gene 209:201–210PubMedCrossRefGoogle Scholar
  28. Halabalaki M, Urbain A, Paschali A, Mitakou S, Tillequin F, Skaltsounis AL (2011) Quercetin and kaempferol 3-O-[α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranoside]-7-O-α-l-rhamnopyranosides from Anthyllis hermanniae: structure determination and conformational studies. J Nat Prod 74:1939–1945PubMedCrossRefGoogle Scholar
  29. Halschou-Jensen K, Knudsen KE, Nielsen S, Bukhave K, Andersen JR (2015) A mixed diet supplemented with l-arabinose does not alter glycaemic or insulinaemic responses in healthy human subjects. Br J Nutr 113:82–88PubMedCrossRefGoogle Scholar
  30. Harholt J, Jensen JK, Sørensen SO, Orfila C, Pauly M, Scheller HV (2006) ARABINAN DEFICIENT 1 is a putative arabinosyltransferase involved in biosynthesis of pectic arabinan in Arabidopsis. Plant Physiol 140:49–58PubMedPubMedCentralCrossRefGoogle Scholar
  31. Harholt J, Jensen JK, Verhertbruggen Y, Søgaard C, Bernard S, Nafisi M, Poulsen CP, Geshi N, Sakuragi Y, Driouich A, Knox JP, Scheller HV (2012) ARAD proteins associated with pectic Arabinan biosynthesis form complexes when transiently overexpressed in planta. Planta 236:115–128PubMedCrossRefGoogle Scholar
  32. Harper AD, Bar-Peled M (2002) Biosynthesis of UDP-xylose. Cloning and characterization of a novel Arabidopsis gene family, UXS, encoding soluble and putative membrane-bound UDP-glucuronic acid decarboxylase isoforms. Plant Physiol 130:2188–2198PubMedPubMedCentralCrossRefGoogle Scholar
  33. Hata K, Tanaka M, Tsumuraya Y, Hashimoto Y (1992) α-l-Arabinofuranosidase from radish (Raphanus sativus L.) seeds. Plant Physiol 100:388–396PubMedPubMedCentralCrossRefGoogle Scholar
  34. Ichinose H, Fujimoto Z, Honda M, Harazono K, Nishimoto Y, Uzura A, Kaneko S (2009) A β-l-arabinopyranosidase from Streptomyces avermiilis is a novel member of glycoside hydrolase family 27. J Biol Chem 284:25097–25106PubMedPubMedCentralCrossRefGoogle Scholar
  35. Ishii T, Konishi T, Ito Y, Ono H, Ohnishi-Kameyama M, Maeda I (2005) A β-(1→3)-arabinopyranosyltransferase that transfers a single arabinopyranose onto arabino-oligosaccharides in mung bean (Vigna radiate) hypocotyls. Phytochemistry 66:2418–2425PubMedCrossRefGoogle Scholar
  36. Ito J, Herter T, Baidoo EE, Lao J, Vega-Sánchez ME, Michelle Smith-Moritz A, Adams PD, Keasling JD, Usadel B, Petzold CJ, Heazlewood JL (2014) Analysis of plant nucleotide sugars by hydrophilic interaction liquid chromatography and tandem mass spectrometry. Anal Biochem 448:14–22PubMedCrossRefGoogle Scholar
  37. Jia Z, Qin Q, Darvill AG, York WS (2003) Structure of the xyloglucan produced by suspension-cultured tomato cells. Carbohydr Res 338:1197–1208PubMedCrossRefGoogle Scholar
  38. Jones L, Milne JL, Ashford D, McQueen-Mason SJ (2003) Cell wall arabinan is essential for guard cell function. Proc Natl Acad Sci 100:11783–11788PubMedPubMedCentralCrossRefGoogle Scholar
  39. Kaats GR, Keith SC, Keith PL, Leckie RB, Perricone NV, Preuss HG (2011) A combination of l-arabinose and chromium lowers circulating glucose and insulin levels after an acute oral sucrose challenge. Nutr J 10:42PubMedPubMedCentralCrossRefGoogle Scholar
  40. Kieliszewski MJ, O’Neill M, Leykam J, Orlando R (1995) Tandem mass spectrometry and structural elucidation of glycopeptides from a hydroxyproline-rich plant cell wall glycoprotein indicate that contiguous hydroxyproline residues are the major sites of hydroxyproline O-arabinosylation. J Biol Chem 270:2541–2549PubMedCrossRefGoogle Scholar
  41. Konishi T, Takeda T, Miyazaki Y, Ohnishi-Kameyama M, Hayashi T, O’Neill MA, Ishii T (2007) A plant mutase that interconverts UDP-arabinofuranose and UDP-arabinopyranose. Glycobiology 17:345–354PubMedCrossRefGoogle Scholar
  42. Konishi T, Aohara T, Igasaki T, Hayashi N, Miyazaki Y, Takahashi A, Hirochika H, Iwai H, Satoh S, Ishii T (2011) Down-regulation of UDP-arabinopyranose mutase reduces the proportion of arabinofuranose present in rice cell walls. Phytochemistry 72:1962–1968PubMedCrossRefGoogle Scholar
  43. Konno H, Nakashima S, Katoh K (2010) Metal-tolerant moss Scopelophila cataractae accumulates copper in the cell wall pectin of the protonema. J Plant Physiol 167:358–364PubMedCrossRefGoogle Scholar
  44. Kotake T, Yamaguchi D, Ohzono H, Hojo S, Kaneko S, Ishida HK, Tsumuraya Y (2004) UDP-sugar pyrophosphorylase with broad substrate specificity toward various monosaccharide 1-phosphates from pea sprouts. J Biol Chem 279:45728–45736PubMedCrossRefGoogle Scholar
  45. Kotake T, Tsuchiya K, Aohara T, Konishi T, Kaneko S, Igarashi K, Samejima M, Tsumuraya Y (2006) An α-l-arabinofuranosidase/β-d-xylosidase from immature seeds of radish (Raphanus sativus L.). J Exp Bot 57:2353–2362PubMedCrossRefGoogle Scholar
  46. Kotake T, Hojo S, Yamaguchi D, Aohara T, Konishi T, Tsumuraya Y (2007) Properties and physiological functions of UDP-sugar pyrophosphorylase in Arabidopsis. Biosci Biotechnol Biochem 71:761–771PubMedCrossRefGoogle Scholar
  47. Kotake T, Takata R, Verma R, Takaba M, Yamaguchi D, Orita T, Kaneko S, Matsuoka K, Koyama T, Reiter W-D, Tsumuraya Y (2009) Bifunctional cytosolic UDP-glucose 4-epimerases catalyse the interconversion between UDP-d-xylose and UDP-l-arabinose in plants. Biochem J 424:169–177PubMedCrossRefGoogle Scholar
  48. Kotani A, Tsuji M, Azama Y, Ishii T, Takeda T, Yamashita T, Shimojima M, Konishi T (2013) Purification and characterization of UDP-arabinopyranose mutase from Chlamydomonas reinhardtii. Biosci Biotechnol Biochem 77:1874–1878PubMedCrossRefGoogle Scholar
  49. Krogh A, Larsson B, von Heijne G, Sonnhammer ELL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580PubMedCrossRefGoogle Scholar
  50. Lagaert S, Pollet A, Courtin CM, Volckaert G (2014) β-Xylosidases and α-l-arabinofuranosidases: accessory enzymes for arabinoxylan degradation. Biotechnol Adv 32:316–332PubMedCrossRefGoogle Scholar
  51. Lamport DTA, Katona L, Roerig S (1973) Galactosylserine in extensin. Biochem J 133:125–132PubMedPubMedCentralCrossRefGoogle Scholar
  52. Lee RC, Hrmova M, Burton RA, Lahnstein J, Fincher GB (2003) Bifunctional family 3 glycoside hydrolases from barley with α-l-arabinofuranosidase and β-d-xylosidase activity. Characterization, primary structures, and COOH-terminal processing. J Biol Chem 278:5377–5387PubMedCrossRefGoogle Scholar
  53. Lee KJ, Sakata Y, Mau SL, Pettolino F, Bacic A, Quatrano RS, Knight CD, Knox JP (2005) Arabinogalactan proteins are required for apical cell extension in the moss Physcomitrella patens. Plant Cell 17:3051–3065PubMedPubMedCentralCrossRefGoogle Scholar
  54. Levigne SV, Ralet MCJ, Quéméner BC, Pollet BNL, Lapierre C, Thibault JFJ (2004) Isolation from sugar beet cell walls of arabinan oligosaccharides esterified by two ferulic acid monomers. Plant Physiol 134:1173–1180PubMedPubMedCentralCrossRefGoogle Scholar
  55. Litterer LA, Schnurr JA, Plaisance KL, Storey KK, Gronwald JW, Somers DA (2006) Characterization and expression of Arabidopsis UDP-sugar pyrophosphorylase. Plant Physiol Biochem 44:171–180PubMedCrossRefGoogle Scholar
  56. Maehara T, Takabatake K, Kaneko S (2013) Expression of Arabidopsis thaliana xylose isomerase gene and its effect on ethanol production in Flammulina velutipes. Fungal Biol 117:776–782PubMedCrossRefGoogle Scholar
  57. McNeil M, Darvill AG, Fry SC, Albersheim P (1984) Structure and function of the primary cell walls of plants. Annu Rev Biochem 53:625–663PubMedCrossRefGoogle Scholar
  58. Meng M, Geisler M, Johansson H, Harholt J, Scheller HV, Mellerowicz EJ, Kleczkowski LA (2009) UDP-glucose pyrophosphorylase is not rate limiting, but is essential in Arabidopsis. Plant Cell Physiol 50:998–1011PubMedCrossRefGoogle Scholar
  59. Minic Z, Rihouey C, Do CT, Lerouge P, Jouanin L (2004) Purification and characterization of enzymes exhibiting β-d-xylosidase activities in stem tissues of Arabidopsis. Plant Physiol 135:867–878PubMedPubMedCentralCrossRefGoogle Scholar
  60. Mohnen D (2008) Pectin structure and biosynthesis. Curr Opin Plant Biol 11:266–277PubMedCrossRefGoogle Scholar
  61. Mølhøj M, Verma R, Reiter WD (2003) The biosynthesis of the branched-chain sugar d-apiose in plants: functional cloning and characterization of a UDP-d-apiose/UDP-d-xylose synthase from Arabidopsis. Plant J 35:693–703PubMedCrossRefGoogle Scholar
  62. Nakamura A, Furuta H, Maeda H, Nagamatsu Y, Yoshimoto A (2001) Analysis of structural components and molecular construction of soybean soluble polysaccharides by stepwise enzymatic degradation. Biosci Biotechnol Biochem 65:2249–2258PubMedCrossRefGoogle Scholar
  63. Nikolovski N, Rubtsov D, Segura MP, Miles GP, Stevens TJ, Dunkley TPJ, Munro S, Lilley KS, Dupree P (2012) Putative glycosyltransferases and other plant Golgi apparatus proteins are revealed by LOPIT proteomics. Plant Physiol 160:1037–1051PubMedPubMedCentralCrossRefGoogle Scholar
  64. Ogawa-Ohnishi M, Matsushita W, Matsubayashi Y (2013) Identification of three hydroxyproline O-arabinosyltransferases in Arabidopsis thaliana. Nat Chem Biol 9:726–730PubMedCrossRefGoogle Scholar
  65. Ohyama K, Shinohara H, Ogawa-Ohnishi M, Matsubayashi Y (2009) A glycopeptide regulating stem cell fate in Arabidopsis thaliana. Nat Chem Biol 5:578–580PubMedCrossRefGoogle Scholar
  66. Okamoto S, Shinohara H, Mori T, Matsubayashi Y, Kawaguchi M (2013) Root-derived CLE glycopeptides control nodulation by direct binding to HAR1 receptor kinase. Nat Commun 4:2191PubMedCrossRefGoogle Scholar
  67. O’Neill MA, Eberhard S, Albersheim P, Darvill AG (2001) Requirement of borate cross-linking of cell wall rhamnogalacturonan II for Arabidopsis growth. Science 294:846–849PubMedCrossRefGoogle Scholar
  68. Osaki S, Kimura T, Sugimoto T, Hizukuri S, Iritani N (2001) l-Arabinose feeding prevents increases due to dietary sucrose in lipogenic enzymes and triacylglycerol levels in rats. J Nutr 131:796–799PubMedGoogle Scholar
  69. Pabst M, Grass J, Fischl R, Léonard R, Jin C, Hinterkörner G, Borth N, Altmann F (2010) Nucleotide and nucleotide sugar analysis by liquid chromatography-electrospray ionization-mass spectrometry on surface-conditioned porous graphitic carbon. Anal Chem 82:9782–9788PubMedPubMedCentralCrossRefGoogle Scholar
  70. Park JI, Ishimizu T, Suwabe K, Sudo K, Masuko H, Hakozaki H, Nou IS, Suzuki G, Watanabe M (2010) UDP-glucose pyrophosphorylase is rate limiting in vegetative and reproductive phases in Arabidopsis thaliana. Plant Cell Physiol 51:981–996PubMedCrossRefGoogle Scholar
  71. Parvez MM, Wakabayashi K, Hoson T, Kamisaka S (1997) White light promotes the formation of diferulic acid in maize coleoptile cell walls by enhancing PAL activity. Physiol Plant 99:39–48CrossRefGoogle Scholar
  72. Popper ZA, Fry SC (2003) Primary cell wall composition of bryophytes and charophytes. Ann Bot 91:1–12PubMedPubMedCentralCrossRefGoogle Scholar
  73. Rao ST, Rossmann MG (1973) Comparison of super-secondary structures in proteins. J Mol Biol 76:241–256PubMedCrossRefGoogle Scholar
  74. Rautengarten C, Ebert B, Moreno I, Temple H, Herter T, Link B, Doñas-Cofré D, Moreno A, Saéz-Aguayo S, Blanco F, Mortimer JC, Schultink A, Reiter W-D, Dupree P, Pauly M, Heazlewood JL, Scheller HV, Orellana A (2014) The Golgi localized bifunctional UDP-rhamnose/UDP-galactose transporter family of Arabidopsis. Proc Natl Acad Sci 111:11563–11568PubMedPubMedCentralCrossRefGoogle Scholar
  75. Reboul R, Geserick C, Pabst M, Frey B, Wittmann D, Lütz-Meindl U, Léonard R, Tenhaken R (2011) Down-regulation of UDP-glucuronic acid biosynthesis leads to swollen plant cell walls and severe developmental defects associated with changes in pectic polysaccharides. J Biol Chem 286:39982–39992PubMedPubMedCentralCrossRefGoogle Scholar
  76. Reiter W-D (2008) Biochemical genetics of nucleotide sugar interconversion reactions. Curr Opin Plant Biol 11:236–243PubMedCrossRefGoogle Scholar
  77. Reiter W-D, Vanzin GF (2001) Molecular genetics of nucleotide sugar interconversion pathways in plants. Plant Mol Biol 47:95–113PubMedCrossRefGoogle Scholar
  78. Roberts AW, Roberts EM, Haigler CH (2012) Moss cell walls: structure and biosynthesis. Front Plant Sci 3:166PubMedPubMedCentralCrossRefGoogle Scholar
  79. Rösti J, Barton CJ, Albrecht S, Dupree P, Pauly M, Findlay K, Roberts K, Seifert GJ (2007) UDP-glucose 4-epimerase isoforms UGE2 and UGE4 cooperate in providing UDP-galactose for cell wall biosynthesis and growth of Arabidopsis thaliana. Plant Cell 19:1565–1579PubMedPubMedCentralCrossRefGoogle Scholar
  80. Salama R, Alalouf O, Tabachnikov O, Zolotnitsky G, Shoham G, Shoham Y (2012) The abp gene in Geobacillus stearothermophilus T-6 encodes a GH27 β-l-arabinopyranosidase. FEBS Lett 586:2436–2442PubMedCrossRefGoogle Scholar
  81. Saulnier L, Crepeau M-J, Lahaye M, Thibault J-F, Garcia-Conesa MT, Kroon PA, Williamson G (1999) Isolation and structural determination of two 5,5′-diferuloyl oligosaccharides indicate that maize heteroxylans are covalently cross-linked by oxidatively coupled ferulates. Carbohydr Res 320:82–92CrossRefGoogle Scholar
  82. Schnurr JA, Storey KK, Jung HJG, Somers DA, Gronwald JW (2006) UDP-sugar pyrophosphorylase is essential for pollen development in Arabidopsis. Planta 224:520–532PubMedCrossRefGoogle Scholar
  83. Schultink A, Cheng K, Park YB, Cosgrove DJ, Pauly M (2013) The identification of two arabinosyltransferases from tomato reveals functional equivalency of xyloglucan side chain substituents. Plant Physiol 163:86–94PubMedPubMedCentralCrossRefGoogle Scholar
  84. Seifert GJ (2004) Nucleotide sugar interconversions and cell wall biosynthesis: how to bring the inside to the outside. Curr Opin Plant Biol 7:277–284PubMedCrossRefGoogle Scholar
  85. Seri K, Sanai K, Matsuo N, Kawakubo K, Xue C, Inoue S (1996) l-Arabinose selectively inhibits intestinal sucrase in an uncompetitive manner and suppresses glycemic response after sucrose ingestion in animals. Metabolism 45:1368–1374PubMedCrossRefGoogle Scholar
  86. Sherson S, Gy I, Medd J, Schmidt R, Dean C, Kreis M, Lecharny A, Cobbett C (1999) The arabinose kinase, ARA1, gene of Arabidopsis is a novel member of the galactose kinase gene family. Plant Mol Biol 39:1003–1012PubMedCrossRefGoogle Scholar
  87. Shimoda R, Okabe K, Kotake T, Matsuoka K, Koyama T, Tryfona T, Liang HC, Dupree P, Tsumuraya Y (2014) Enzymatic fragmentation of carbohydrate moieties of radish arabinogalactan-protein and elucidation of the structures. Biosci Biotechnol Biochem 78:818–831PubMedCrossRefGoogle Scholar
  88. Sumiyoshi M, Inamura T, Nakamura A, Aohara T, Ishii T, Satoh S, Iwai H (2015) UDP-arabinopyranose mutase 3 is required for pollen wall morphogenesis in rice (Oryza sativa). Plant Cell Physiol 56:232–241PubMedCrossRefGoogle Scholar
  89. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729PubMedPubMedCentralCrossRefGoogle Scholar
  90. Tan KS, Hoson T, Masuda Y, Kamisaka S (1992) Involvement of cell wall-bound diferulic acid in lightinduced decrease in growth rate and cell wall extensibility of Oryza coleoptiles. Plant Cell Physiol 33:103–108Google Scholar
  91. Tan L, Qiu F, Lamport DTA, Kieliszewski MJ (2004) Structure of a hydroxyproline (Hyp)-arabinogalactan polysaccharide from repetitive Ala-Hyp expressed in transgenic Nicotiana tabacum. J Biol Chem 279:13156–13165PubMedCrossRefGoogle Scholar
  92. Tan L, Varnai P, Lamport DTA, Yuan C, Xu J, Qiu F, Kieliszewski MJ (2010) Plant O-hydroxyproline arabinogalactans are composed of repeating trigalactosyl subunits with short bifurcated side chains. J Biol Chem 285:24575–24583PubMedPubMedCentralCrossRefGoogle Scholar
  93. Tan L, Eberhard S, Pattathil S, Warder C, Glushka J, Yuan C, Hao Z, Zhu X, Avci U, Miller JS, Baldwin D, Pham C, Orlando R, Darvill A, Hahn MG, Kieliszewski MJ, Mohnen D (2013) An Arabidopsis cell wall proteoglycan consists of pectin and arabinoxylan covalently linked to an arabinogalactan protein. Plant Cell 25:270–287PubMedPubMedCentralCrossRefGoogle Scholar
  94. Tateishi A, Mori H, Watari J, Nagashima K, Yamaki S, Inoue H (2005) Isolation, characterization, and cloning of α-l-arabinofuranosidase expressed during fruit ripening of Japanese pear. Plant Physiol 138:1653–1664PubMedPubMedCentralCrossRefGoogle Scholar
  95. Teuber H, Herrmann K (1978) Flavonol glycosides of leaves and fruits of dill (Anethum graveolens L.). II. Phenolics of spices. Z Lebensm Unters Forsch 167:101–104PubMedCrossRefGoogle Scholar
  96. Thomas RJ (1977) Wall analyses of Lophocolea seta cells (bryophyta) before and after elongation. Plant Physiol 59:337–340PubMedPubMedCentralCrossRefGoogle Scholar
  97. Torres-Mendoza D, González J, Ortega-Barría E, Heller MV, Capson TL, McPhail K, Gerwick WH, Cubilla-Rios L (2006) Weakly antimalarial flavonol arabinofuranosides from Calycolpus warszewiczianus. J Nat Prod 69:826–828PubMedCrossRefGoogle Scholar
  98. Tryfona T, Liang H-C, Kotake T, Kaneko S, Marsh J, Ichinose H, Lovegrove A, Tsumuraya Y, Shewry PR, Stephens E, Dupree P (2010) Carbohydrate structural analysis of wheat flour arabinogalactan protein. Carbohydr Res 345:2648–2656PubMedCrossRefGoogle Scholar
  99. Tryfona T, Liang H-C, Kotake T, Tsumuraya Y, Stephens E, Dupree P (2012) Structural characterisation of Arabidopsis leaf arabinogalactan polysaccharides. Plant Physiol 160:653–666PubMedPubMedCentralCrossRefGoogle Scholar
  100. Tsumuraya Y, Ogura K, Hashimoto Y, Mukoyama H, Yamamoto S (1988) Arabinogalactan-proteins from primary and mature roots of radish (Raphanus sativus L.). Plant Physiol 86:155–160PubMedPubMedCentralCrossRefGoogle Scholar
  101. Ueda K, Yoshimura F, Miyao A, Hirochika H, Nonomura K, Wabiko H (2013) COLLAPSED ABNORMAL POLLEN1 gene encoding the arabinokinase-like protein is involved in pollen development in rice. Plant Physiol 162:858–871PubMedPubMedCentralCrossRefGoogle Scholar
  102. Vierhuis E, York WS, Kolli VSK, Vincken JP, Schols HA, Van Alebeek GWM, Voragen AGJ (2001) Structural analyses of two arabinose containing oligosaccharides derived from olive fruit xyloglucan: XXSG and XLSG. Carbohydr Res 332:285–297PubMedCrossRefGoogle Scholar
  103. Vincken JP, Wijsman AJM, Beldman G, Niessen WMA, Voragen AGJ (1996) Potato xyloglucan is built from XXGG-type subunits. Carbohydr Res 288:219–232PubMedCrossRefGoogle Scholar
  104. Virkki L, Maina HN, Johansson L, Tenkanen M (2008) New enzyme-based method for analysis of water-soluble wheat arabinoxylans. Carbohydr Res 343:521–529PubMedCrossRefGoogle Scholar
  105. Wakabayashi K, Hoson T, Kamisaka S (1997) Osmotic stress suppresses cell wall stiffening and the increase in cell wall-bound ferulic and diferulic acids in wheat coleoptiles. Plant Physiol 113:967–973PubMedPubMedCentralGoogle Scholar
  106. Wakabayashi K, Soga K, Hoson T, Kotake T, Yamazaki T, Higashibata A, Ishioka N, Shimazu T, Fukui K, Osada I, Kasahara H, Kamada M (2015) Suppression of hydroxycinnamate network formation in cell walls of rice shoots grown under microgravity conditions in space. PLoS One 10:e0137992PubMedPubMedCentralCrossRefGoogle Scholar
  107. Westphal Y, Kühnel S, de Waard P, Hinz SWA, Schols HA, Voragen AGJ, Gruppen H (2010) Branched arabino-oligosaccharides isolated from sugar beet arabinan. Carbohydr Res 345:1180–1189PubMedCrossRefGoogle Scholar
  108. Willats WG, McCartney L, Mackie W, Knox JP (2001) Pectin: cell biology and prospects for functional analysis. Plant Mol Biol 47:9–27PubMedCrossRefGoogle Scholar
  109. Xu C, Liberatore KL, MacAlister CA, Huang Z, Chu YH, Jiang K, Brooks C, Ogawa-Ohnishi M, Xiong G, Pauly M, Van Eck J, Matsubayashi Y, van der Knaap E, Lippman ZB (2015) A cascade of arabinosyltransferases controls shoot meristem size in tomato. Nat Genet 47:784–792PubMedCrossRefGoogle Scholar
  110. Yonekura-Sakakibara K, Tohge T, Matsuda F, Nakabayashi R, Takayama H, Niida R, Watanabe-Takahashi A, Inoue E, Saito K (2008) Comprehensive flavonol profiling and transcriptome coexpression analysis leading to decoding gene-metabolite correlations in Arabidopsis. Plant Cell 20:2160–2176PubMedPubMedCentralCrossRefGoogle Scholar
  111. York WS, Kumar Kolli VS, Orlando R, Albersheim P, Darvill AG (1996) The structures of arabinoxyloglucans produced by solanaceous plants. Carbohydr Res 285:99–128PubMedCrossRefGoogle Scholar
  112. Yoshikawa M, Morikawa T, Yamamoto K, Kato Y, Nagatomo A, Matsuda H (2005) Floratheasaponins A-C, acylated oleanane-type triterpene oligoglycosides with anti-hyperlipidemic activities from flowers of the tea plant (Camellia sinensis). J Nat Prod 68:1360–1365PubMedCrossRefGoogle Scholar
  113. Zablackis E, Huang J, Müller B, Darvill AG, Albersheim P (1995) Characterization of the cell-wall polysaccharides of Arabidopsis thaliana leaves. Plant Physiol 107:1129–1138PubMedPubMedCentralCrossRefGoogle Scholar
  114. Zhang Q, Shirley NJ, Burton RA, Lahnstein J, Hrmova M, Fincher GB (2010) The genetics, transcriptional profiles, and catalytic properties of UDP-α-d-xylose 4-epimerases from barley. Plant Physiol 153:555–568PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan 2016

Authors and Affiliations

  • Toshihisa Kotake
    • 1
  • Yukiko Yamanashi
    • 1
  • Chiemi Imaizumi
    • 1
  • Yoichi Tsumuraya
    • 1
  1. 1.Division of Life ScienceGraduate School of Science and Engineering, Saitama UniversitySaitamaJapan

Personalised recommendations