Skip to main content
Log in

Transcriptional changes of gibberellin oxidase genes in grapevines with or without gibberellin application during inflorescence development

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

The concept that gibberellin (GA) application on seeded grapevines induces seedlessness has been known for decades in viticulture. GA was applied to inflorescence clusters of seeded diploid grapevine cultivar ‘Tamnara’ (Vitis spp.) at 14 days before full bloom (DBF). Morphological and molecular effects of GA application were examined on the induction of parthenocarpic fruit development. With GA application, ovaries were enlarged and pollen tube growth was completely inhibited. Vitis GA oxidase enzymes, key determinants for GA level, were characterized through phylogenetic analysis with Arabidopsis GA oxidase enzymes. Five VvGA 20-oxidase (VvGA20ox), three VvGA 3-oxidase (VvGA3ox), and nine VvGA 2-oxidase (VvGA2ox) family proteins, and one VvGA methyltransferase (VvGAMT) and one Vitis cytochrome P450 714A1 proteins were identified, and their expression patterns were analyzed during inflorescence development from 14 DBF to 5 days after full bloom (DAF). VvGA2ox1, VvGA20ox3, and VvGA3ox2 were the most abundantly expressed genes in each gene family at 7, 5, and 2 DBF, respectively. Following GA application at 14 DBF inducing seedlessness, GA catabolic genes such as VvGAMT2, VvGA2ox3, and VvGA2ox4 were up-regulated at 12 DBF, full bloom, and 5 DAF, respectively. Conversely, most GA biosynthetic genes, VvGA20oxs and VvGA3oxs, were down-regulated at near full bloom, and the timing of their peak expression was changed. These results suggest that GA application at pre-bloom changes the GA biosynthesis into GA catabolic pathway at near full bloom by altering the transcription level and timing of GA oxidase genes during grapevine inflorescence development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Carrera E, Ruiz-Rivero O, Peres LEP, Atares A, García-Martínez JL (2012) Characterization of the procera tomato mutant shows novel functions of the SlDELLA protein in the control of flower morphology, cell division and expansion, and the auxin-signaling pathway during fruit-set and development. Plant Physiol 160:1581–1596

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116

    Article  CAS  Google Scholar 

  • Chhun T, Aya K, Asano K, Yamamoto E, Morinaka Y, Watanabe M, Kitano H, Ashikari M, Matsuoka M, Ueguchi-Tanaka M (2007) Gibberellin regulates pollen viability and pollen tube growth in rice. Plant Cell 19:3876–3888

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Coombe BG (1960) Relationship of growth and development to changes in sugars, auxins, and gibberellins in fruit of seeded and seedless varieties of Vitis vinifera. Plant Physiol 35:241–250

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Coombe BG (1995) Adoption of a system for identifying grapevine growth stages. Aust J Grape Wine Res 1:100–110

    Article  Google Scholar 

  • Dass HC, Randhawa GS (1968) Effect of gibberellin on seeded Vitis vinifera with special reference to induction of seedlessness. Vitis 7:10–21

    Google Scholar 

  • de Jong M, Mariani C, Vriezen WH (2009a) The role of auxin and gibberellin in tomato fruit set. J Exp Bot 60:1523–1532

    Article  PubMed  Google Scholar 

  • de Jong M, Wolters-Arts M, Feron R, Mariani C, Vriezen WH (2009b) The Solanum lycopersicum AUXIN RESPONSE FACTOR 7 (SlARF7) regulates auxin signaling during tomato fruit set and development. Plant J 57:160–170

    Article  PubMed  Google Scholar 

  • de Jong M, Wolters-Arts M, García-Martínez JL, Mariani C, Vriezen WH (2011) The Solanum lycopersicum AUXIN RESPONSE FACTOR 7 (SlARF7) mediates cross-talk between auxin and gibberellin signalling during tomato fruit set and development. J Exp Bot 62:617–626

    Article  PubMed  Google Scholar 

  • Deluc LG, Grimplet J, Wheatley MD, Tillett RL, Quilici DR, Osborne C, Schooley DA, Schlauch KA, Cushman JC, Cramer GR (2007) Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development. BMC Genome 8:429

    Article  Google Scholar 

  • Gallego-Giraldo L, Ubeda-Tomás S, Gisbert C, García-Martínez JL, Moritz T, López-Díaz I (2008) Gibberellin homeostasis in tobacco is regulated by gibberellin metabolism genes with different gibberellin sensitivity. Plant Cell Physiol 49:679–690

    Article  CAS  PubMed  Google Scholar 

  • García-Hurtado N, Carrera E, Ruiz-Rivero O, López-Gresa MP, Hedden P, Gong F, García-Martínez JL (2012) The characterization of transgenic tomato overexpressing gibberellin 20-oxidase reveals induction of parthenocarpic fruit growth, higher yield, and alteration of the gibberellin biosynthetic pathway. J Exp Bot 63:5803–5813

    Article  PubMed  Google Scholar 

  • Gillaspy G, Bendavid H, Gruissem W (1993) Fruits: a developmental perspective. Plant Cell 5:1439–1451

    PubMed Central  PubMed  Google Scholar 

  • Goto N, Pharis RP (1999) Role of gibberellins in the development of floral organs of the gibberellin-deficient mutant, ga1-1, of Arabidopsis thaliana. Can J Bot 77:944–954

    CAS  Google Scholar 

  • Grimplet J, Deluc LG, Tillett RL, Wheatley MD, Schlauch KA, Cramer GR, Cushman JC (2007) Tissue-specific mRNA expression profiling in grape berry tissues. BMC Genome 8:187

    Article  Google Scholar 

  • Gustafson FG (1936) Inducement of fruit development by growth-promoting chemicals. Proc Natl Acad Sci USA 22:628–636

    Article  CAS  PubMed  Google Scholar 

  • Hedden P, Kamiya Y (1997) Gibberellin biosynthesis: enzymes, genes, and their regulation. Annu Rev Plant Physiol Plant Mol Biol 48:431–460

    Article  CAS  PubMed  Google Scholar 

  • Hedden P, Phillips AL (2000) Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci 5:523–530

    Article  CAS  PubMed  Google Scholar 

  • Hedden P, Thomas SG (2012) Gibberellin biosynthesis and its regulation. Biochem J 444:11–25

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Mitchum MG, Barnaby N, Ayele BT, Ogawa M, Nam E, Lai WC, Hanada A, Alonso JM, Ecker JR, Swain SM, Yamaguchi S, Kamiya Y, Sun TP (2008) Potential sites of bioactive gibberellin production during reproductive growth in Arabidopsis. Plant Cell 20:320–336

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hülskamp M, Schneitz K, Pruitt RE (1995) Genetic evidence for a long-range activity that directs pollen tube guidance in Arabidopsis. Plant Cell 7:57–64

    PubMed Central  PubMed  Google Scholar 

  • Iwahori S, Weaver RJ, Pool RM (1968) Gibberellin-like activity in berries of seeded and seedless ‘Tokay’ grapes. Plant Physiol 43:333–337

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lijavetzky D, Carbonell-Bejerano P, Grimplet J, Bravo G, Flores P, Fenoll J, Hellin P, Oliveros JC, Martínez-Zapater JM (2012) Berry flesh and skin ripening features in Vitis vinifera as assessed by transcriptional profiling. PLoS One 7:e39547

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lu J, Lamikanra O, Leong S (1997) Induction of seedlessness in ‘Triumph’ muscadine grape (Vitis rotundifolia Michx) by applying gibberellic acid. HortScience 32:89–90

    Google Scholar 

  • MacMillan J (2002) Occurrence of gibberellins in vascular plants, fungi, and bacteria. J Plant Growth Regul 20:387–442

    Article  Google Scholar 

  • Mathieu S, Terrier N, Procureur J, Bigey F, Gunata Z (2005) A carotenoid cleavage dioxygenase from Vitis vinifera L.: functional characterization and expression during grape berry development in relation to C-13-norisoprenoid accumulation. J Exp Bot 56:2721–2731

    Article  CAS  PubMed  Google Scholar 

  • Mazzucato A, Taddei AR, Soressi GP (1998) The parthenocarpic fruit (pat) mutant of tomato (Lycopersicon esculentum Mill.) sets seedless fruits and has aberrant anther and ovule development. Development 125:107–114

    CAS  PubMed  Google Scholar 

  • Mitchum MG, Yamaguchi S, Hanada A, Kuwahara A, Yoshioka Y, Kato T, Tabata S, Kamiya Y, Sun TP (2006) Distinct and overlapping roles of two gibberellin 3-oxidases in Arabidopsis development. Plant J 45:804–818

    Article  CAS  PubMed  Google Scholar 

  • Okamoto G, Miura K (2005) Effect of pre-bloom GA application on pollen tube growth in cv. Delaware grape pistils. Vitis 44:157–159

    CAS  Google Scholar 

  • Okamoto G, Hayashi Y, Hirano K (2002) Morphological studies on the development of transmitting tissues in diploid and tetraploid grape pistils. J Jpn Soc Hortic Sci 71:8–12

    Article  Google Scholar 

  • Olimpieri I, Siligato F, Caccia R, Mariotti L, Ceccarelli N, Soressi GP, Mazzucato A (2007) Tomato fruit set driven by pollination or by the parthenocarpic fruit allele are mediated by transcriptionally regulated gibberellin biosynthesis. Planta 226:877–888

    Article  CAS  PubMed  Google Scholar 

  • Olszewski N, Sun TP, Gubler F (2002) Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell 14 (suppl):61–80

    Google Scholar 

  • Ozga JA, Yu J, Reinecke DM (2003) Pollination-, development-, and auxin-specific regulation of gibberellin 3β-hydroxylase gene expression pea fruit and seeds. Plant Physiol 131:1137–1146

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ozga JA, Reinecke DM, Ayele BT, Ngo P, Nadeau C, Wickramarathna AD (2009) Developmental and hormonal regulation of gibberellin biosynthesis and catabolism in pea fruit. Plant Physiol 150:448–462

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Park KS, Yun HK, Suh HS, Jeong SB, Cho HM (2004) Breeding of early season grape cultivar ‘Tamnara’ (Vitis hybrid) with high quality and disease resistance. Korean J Hortic Sci Technol 22:458–461

    Google Scholar 

  • Phillips AL, Ward DA, Uknes S, Appleford NE, Lange T, Huttly AK, Gaskin P, Graebe JE, Hedden P (1995) Isolation and expression of three gibberellin 20-oxidase cDNA clones from Arabidopsis. Plant Physiol 108:1049–1057

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Plackett ARG, Thomas SG, Wilson ZA, Hedden P (2011) Gibberellin control of stamen development: a fertile field. Trends Plant Sci 16:568–578

    Article  CAS  PubMed  Google Scholar 

  • Plackett ARG, Powers SJ, Fernandez-Garcia N, Urbanova T, Takebayashi Y, Seo M, Jikumaru Y, Benlloch R, Nilsson O, Ruiz-Rivero O, Phillips AL, Wilson ZA, Thomas SG, Hedden P (2012) Analysis of the developmental roles of the Arabidopsis gibberellin 20-oxidases demonstrates that GA20ox1, -2, and -3 are the dominant paralogs. Plant Cell 24:941–960

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Poupin MJ, Federici F, Medina C, Matus JT, Timmermann T, Arce-Johnson P (2007) Isolation of the three grape sub-lineages of B-class MADS-box TM6, PISTILLATA, and APETALA3 genes which are differentially expressed during flower and fruit development. Gene 404:10–24

    Article  CAS  PubMed  Google Scholar 

  • Richards DE, King KE, Ait-ali T, Harberd NP (2001) How gibberellin regulates plant growth and development: a molecular genetic analysis of gibberellin signaling. Annu Rev Plant Physiol Plant Mol Biol 52:67–88

    Article  CAS  PubMed  Google Scholar 

  • Rieu I, Ruiz-Rivero O, Fernandez-Garcia N, Griffiths J, Powers SJ, Gong F, Linhartova T, Eriksson S, Nilsson O, Thomas SG, Phillips AL, Hedden P (2008) The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle. Plant J 53:488–504

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto T, Miura K, Itoh H, Tatsumi T, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Agrawal GK, Takeda S, Abe K, Miyao A, Hirochika H, Kitano H, Ashikari M, Matsuoka M (2004) An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol 134:1642–1653

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sangar V, Blankenberg DJ, Altman N, Lesk AM (2007) Quantitative sequence-function relationships in proteins based on gene ontology. BMC Bioinform 8:294

    Article  Google Scholar 

  • Schomburg FM, Bizzell CM, Lee DJ, Zeevaart JAD, Amasino RM (2003) Overexpression of a novel class of gibberellin 2-oxidases decreases gibberellin levels and creates dwarf plants. Plant Cell 15:151–163

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schuler MA, Werck-Reichhart D (2003) Functional genomics of P450s. Annu Rev Plant Biol 54:629–667

    Article  CAS  PubMed  Google Scholar 

  • Serrani JC, Fos M, Atarés A, García-Martínez JL (2007a) Effect of gibberellin and auxin on parthenocarpic fruit growth induction in the cv micro-tom of tomato. J Plant Growth Regul 26:211–221

    Article  CAS  Google Scholar 

  • Serrani JC, Sanjuán R, Ruiz-Rivero O, Fos M, García-Martínez JL (2007b) Gibberellin regulation of fruit set and growth in tomato. Plant Physiol 145:246–257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Singh DP, Jermakow AM, Swain SM (2002) Gibberellins are required for seed development and pollen tube growth in Arabidopsis. Plant Cell 14:3133–3147

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Song J, Guo BJ, Song FW, Peng HR, Yao YY, Zhang YR, Sun QX, Ni ZF (2011) Genome-wide identification of gibberellins metabolic enzyme genes and expression profiling analysis during seed germination in maize. Gene 482:34–42

    Article  CAS  PubMed  Google Scholar 

  • Sun TP (2008) Gibberellin metabolism, perception, and signaling pathways in Arabidopsis. Arab Book 6:e0103

    Article  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  Google Scholar 

  • Thomas SG, Phillips AL, Hedden P (1999) Molecular cloning and functional expression of gibberellin 2-oxidases, multifunctional enzymes involved in gibberellin deactivation. Proc Natl Acad Sci USA 96:4698–4703

    Article  CAS  PubMed  Google Scholar 

  • Varbanova M, Yamaguchi S, Yang Y, McKelvey K, Hanada A, Borochov R, Yu F, Jikumaru Y, Ross J, Cortes D, Ma CJ, Noel JP, Mander L, Shulaev V, Kamiya Y, Rodermel S, Weiss D, Pichersky E (2007) Methylation of gibberellins by Arabidopsis GAMT1 and GAMT2. Plant Cell 19:32–45

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vivian-Smith A, Koltunow AM (1999) Genetic analysis of growth-regulator-induced parthenocarpy in Arabidopsis. Plant Physiol 121:437–452

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang J, Horiuchi S, Ogata T, Matsui H (1993) Relation between the formation of parthenocarpic berries and endogenous plant hormone contents in seedless grape cultivars. J Jpn Soc Hortic Sci 62:9–14

    Article  CAS  Google Scholar 

  • Wang H, Jones B, Li Z, Frasse P, Delalande C, Regad F, Chaabouni S, Latche A, Pech JC, Bouzayen M (2005) The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis. Plant Cell 17:2676–2692

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Z, Zhao FX, Zhao X, Ge H, Chai LJ, Chen SW, Perl A, Ma HQ (2012) Proteomic analysis of berry-sizing effect of GA3 on seedless Vitis vinifera L. Proteomics 12:86–94

    Article  PubMed  Google Scholar 

  • Wilson RN, Heckman JW, Somerville CR (1992) Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant Physiol 100:403–408

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–251

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi S, Kamiya Y, Sun T (2001) Distinct cell-specific expression patterns of early and late gibberellin biosynthetic genes during Arabidopsis seed germination. Plant J 28:443–453

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zhang B, Yan D, Dong W, Yang W, Li Q, Zeng L, Wang J, Wang L, Hicks LM, He Z (2011) Two Arabidopsis cytochrome P450 monooxygenases, CYP714A1 and CYP714A2, function redundantly in plant development through gibberellin deactivation. Plant J 67:342–353

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Nomura T, Xu Y, Zhang Y, Peng Y, Mao B, Hanada A, Zhou H, Wang R, Li P, Zhu X, Mander LN, Kamiya Y, Yamaguchi S, He Z (2006) ELONGATED UPPERMOST INTERNODE encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice. Plant Cell 18:442–456

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Next-Generation BioGreen 21 Program (PJ008213), Rural Development Administration, Suwon, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee Jae Lee.

Additional information

C. J. Jung and Y. Y. Hur contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1. Primers used for qRT-PCR

10265_2013_623_MOESM2_ESM.tif

Fig. S1. qRT-PCR efficiency plots for GA metabolic genes. Mean quantification cycle (C T) values obtained from 10-fold serial dilution series of each gene plotted against the logarithm of cDNA template concentration. The amplification efficiency (E) was calculated by E = [10(−1/S) − 1] x 100, where S was the slope of the linear regression line (TIFF 74333 kb)

10265_2013_623_MOESM3_ESM.tif

Fig. S2. Sequence analysis of VvGA20ox and VvGA3ox family proteins. a Comparison of VvGA20oxs and AtGA20oxs. Both consensus sequences LPWKET for GA substrates binding and NYYPXCXXP for the common co-substrate, 2-oxoglutarate, binding of Vitis GA20oxs are denoted with dotted lines. b Comparison of VvGA3oxs and AtGA3oxs. ▼, Fe2+ binding site; ▽, 2-oxoglutarate binding site. The Fe2+ 2-ODD domain is underlined with a solid line (TIFF 125051 kb)

10265_2013_623_MOESM4_ESM.tif

Fig. S3. Sequence analysis of VvGA2ox, VvGAMT, and VvCYP714A family proteins. a Comparison of VvGA2oxs and AtGA2oxs. ▼, Fe2+ binding site; ▽, 2-oxoglutarate binding site. The Fe2+ 2-ODD domain is underlined with a solid line. b Comparison of VvGAMT2 with AtGAMT1 and AtGAMT2. The S-adenosyl-L-methionine-dependent methyltransferase domain is underlined. c Comparison of VvCYP714A1, AtCYP714A1, and AtCYP714A2. ▼, heme binding site. The conserved domain is underlined. Highly conserved amino acids are in black and similar amino acids are gray colored (TIFF 218303 kb)

10265_2013_623_MOESM5_ESM.pdf

Fig. S4. Comparative nucleotide sequence analysis of Vitis and Arabidopsis GA biosynthesis genes. a Comparison of VvGA20oxs and AtGA20oxs. b Comparison of VvGA3oxs and AtGA3oxs (PDF 6968 kb)

10265_2013_623_MOESM6_ESM.pdf

Comparative nucleotide sequence analysis of Vitis and Arabidopsis GA catabolic genes. a Comparison of VvGA2oxs and AtGA2oxs. b Comparison of VvGAMT2 with AtGAMT1 and AtGAMT2. c Comparison of VvCYP714A1, ELA1, and ELA2 (PDF 9793 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, C.J., Hur, Y.Y., Jung, SM. et al. Transcriptional changes of gibberellin oxidase genes in grapevines with or without gibberellin application during inflorescence development. J Plant Res 127, 359–371 (2014). https://doi.org/10.1007/s10265-013-0623-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-013-0623-x

Keywords

Navigation