Skip to main content
Log in

RNAi-mediated suppression of the phenylalanine ammonia-lyase gene in Salvia miltiorrhiza causes abnormal phenotypes and a reduction in rosmarinic acid biosynthesis

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Medicinal Salvia miltiorrhiza contains two main groups of active pharmaceutical ingredients: lipid-soluble tanshinones and water-soluble phenolic acids, including rosmarinic acid and salvianolic acid B. Phenylalanine ammonia-lyase (PAL) catalyzes the first step in the phenylpropanoid pathway and is assumed to be closely related to the accumulation of rosmarinic acid and its derivatives. We selected a 217-bp fragment, located at the 3′ end of the coding region of PAL1, to establish an RNA interference construct that was introduced into S. miltiorrhiza via Agrobacterium tumefaciens-mediated transformation. PAL-suppressed plants exhibited several unusual phenotypes such as stunted growth, delayed root formation, altered leaves, and reduced lignin deposition. The total phenolic content was decreased by 20–70% in PAL-suppressed lines, and was accompanied by lower PAL activity. Down-regulation of PAL also affected the expression of C4H, 4CL2, and TAT, which are related genes in the rosmarinic acid pathway. Moreover, rosmarinic acid and salvianolic acid B were markedly reduced in PAL-suppressed lines, as detected by HPLC analysis. Our results indicate that PAL is very important for the synthesis of major water-soluble pharmaceutical ingredients within S. miltiorrhiza.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Achnine L, Blancaflor EB, Rasmussen S, Dixon RA (2004) Colocalization of l-phenylalanine ammonia-lyase and cinnamate 4-hydroxylase for metabolic channeling in phenylpropanoid biosynthesis. Plant Cell 16:3098–3109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bate NJ, Orr J, Ni W, Meromi A, Nadler-Hassar T, Doerner PW, Dixon RA, Lamb CJ, Elkind Y (1994) Quantitative relationship between phenylalanine ammonia-lyase levels and phenylpropanoid accumulation in transgenic tobacco identifies a rate-determining step in natural product synthesis. Proc Natl Acad Sci USA 91:7608–7612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blount JW, Korth KL, Masoud SA, Rasmussen S, Lamb C, Dixon RA (2000) Altering expression of cinnamic acid 4-hydroxylase in transgenic plants provides evidence for a feedback loop at the entry point into the phenylpropanoid pathway. Plant Physiol 122:107–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Campbell MM, Sederoff RR (1996) Variation in lignin content and composition, mechanisms of control and implications for the genetic improvement of plants. Plant Physiol 110:3–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Chen F (2000) Effect of yeast elicitor on the secondary metabolism of Ti-transformed Salvia miltiorrhiza cell suspension cultures. Plant Cell Rep 19:710–717

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Reddy MS, Temple S, Jackson L, Shadle G, Dixon RA (2006) Multi-site genetic modulation of monolignol biosynthesis suggests new routes for formation of syringyl lignin and wall-bound ferulic acid in alfalfa (Medicago sativa L.). Plant J 48:113–124

    Article  CAS  PubMed  Google Scholar 

  • Cochrane FC, Davin LB, Lewis NG (2004) The Arabidopsis phenylalanine ammonia lyase gene family: kinetic characterization of the four PAL isoforms. Phytochemistry 65:1557–1564

    Article  CAS  PubMed  Google Scholar 

  • Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure from small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Elkind Y, Edwards R, Mavandad M, Hedrick SA, Ribak O, Dixon RA, Lamb CJ (1990) Abnormal plant development and down-regulation of phenylpropanoid biosynthesis in transgenic tobacco containing a heterologous phenylalanine ammonia-lyase gene. Proc Natl Acad Sci USA 81:9057–9061

    Article  Google Scholar 

  • Gleave AP (1992) A versatile binary vector system with a T-DNA organisational structure conducive to efficient integration of cloned DNA into the plant genome. Plant Mol Biol 20:1203–1207

    Article  CAS  PubMed  Google Scholar 

  • Goujon T, Sibout R, Eudes A, Mackay J, Jouanin L (2003) Genes involved in the biosynthesis of lignin precursors in Arabidopsis thaliana. Plant Physiol Biochem 41:677–687

    Article  CAS  Google Scholar 

  • Hahlbrock K, Scheel D (1989) Physiology and molecular biology of phenylpropanoid metabolism. Annu Rev Plant Physiol Plant Mol Biol 40:347–369

    Article  CAS  Google Scholar 

  • Higuchi M, Yoshizumi T, Kuriyama T, Hara H, Akagi C, Shimada H, Matsui M (2009) Simple construction of plant RNAi vectors using long oligonucleotides. J Plant Res 122:477–482

    Article  CAS  PubMed  Google Scholar 

  • Hu P, Luo G, Zhao Z, Jiang Z (2005) Quality assessment of Radix Salviae Miltiorrhizae. Chem Pharm Bull (Tokyo) 53:481–486

    Article  CAS  PubMed  Google Scholar 

  • Hu YS, Zhang L, Di P, Chen WS (2009) Cloning and induction of phenylalanine ammonia-lyase gene from Salvia miltiorrhiza and its effect on hydrophilic phenolic acids levels. Chin J Nat Med 7:449–457

    Article  CAS  Google Scholar 

  • Liu AH, Li L, Xu M, Lin YH, Guo HZ, Guo DA (2006a) Simultaneous quantification of six major phenolic acids in the roots of Salvia miltiorrhiza and four related traditional Chinese medicinal preparations by HPLC-DAD method. J Pharm Biomed Anal 41:48–56

    Article  PubMed  Google Scholar 

  • Liu R, Xu S, Li J, Hu Y, Lin Z (2006b) Expression profile of a PAL gene from Astragalus membranaceus var mongholicus and its crucial role in flux into flavonoid biosynthesis. Plant Cell Rep 25:705–710

    Article  CAS  PubMed  Google Scholar 

  • Lois R, Dietrich A, Hahlbrock K, Schulz W (1989) A phenylalanine ammonia-lyase gene from parsley: structure, regulation and identification of elicitor and light responsive cis-acting elements. EMBO J 8:1641–1648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Foo LY (2002) Polyphenolics of Salvia—a review. Photochemistry 59:117–140

    Article  CAS  Google Scholar 

  • Ma L, Zhang X, Guo H, Gan Y (2006) Determination of four water-soluble compounds in Salvia miltiorrhiza Bunge by high-performance liquid chromatography with a coulometric electrode array system. J Chromatogr B Analyt Technol Biomed Life Sci 833:260–263

    Article  CAS  PubMed  Google Scholar 

  • MacDonald MJ, D’Cunha GB (2007) A modern view of phenylalanine ammonia lyase. Biochem Cell Biol 85:273–282

    Article  CAS  PubMed  Google Scholar 

  • Mahesh V, Rakotomalala JJ, Le Gal L, Vigne H, de Kochko A, Hamon S, Noirot M, Campa C (2006) Isolation and genetic mapping of a Coffea canephora phenylalanine ammonia-lyase gene (CcPAL1) and its involvement in the accumulation of caffeoyl quinic acids. Plant Cell Rep 25:986–992

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Olsen KM, Lea US, Slimestad R, Verheul M, Lillo C (2008) Differential expression of four Arabidopsis PAL genes; PAL1 and PAL2 have functional specialization in abiotic environmental-triggered flavonoid synthesis. J Plant Physiol 165:1491–1499

    Article  CAS  PubMed  Google Scholar 

  • Petersen M, Simmonds MS (2003) Rosmarinic acid. Phytochemistry 62:121–125

    Article  CAS  PubMed  Google Scholar 

  • Petersen M, Haüsler E, Karwatzki B, Meinhard J (1993) Proposed biosynthetic pathway for rosmarinic acid in cell cultures of Coleus blumei Benth. Planta 189:10–14

    Article  CAS  Google Scholar 

  • Razzaque A, Ellis BE (1977) Rosmarinic acid production in Coleus cell cultures. Planta 137:287–291

    Article  CAS  PubMed  Google Scholar 

  • Rohde A, Morreel K, Ralph J, Goeminne G, Hostyn V, De Rycke R, Kushnir S, Van Doorsselaere J, Joseleau JP, Vuylsteke M, Van Driessche G, Van Beeumen J, Messens E, Boerjan W (2004) Molecular phenotyping of the pal1 and pal2 mutants of A. thaliana reveals far-reaching consequences on phenylpropanoid, amino acid, and carbohydrate metabolism. Plant Cell 16:2749–2771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Sewalt V, Ni W, Blount JW, Jung HG, Masoud SA, Howles PA, Lamb C, Dixon RA (1997) Reduced lignin content and altered lignin composition in transgenic tobacco down-regulated in expression of l-phenylalanine ammonia-lyase or cinnamate 4-hydroxylase. Plant Physiol 115:41–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shadle GL, Wesley SV, Korth KL, Chen F, Lamb C, Dixon RA (2003) Phenylpropanoid compounds and disease resistance in transgenic tobacco with altered expression of L-phenylalanine ammonia-lyase. Phytochemistry 64:153–161

    Article  CAS  PubMed  Google Scholar 

  • Song J, Wang Z (2009) Molecular cloning, expression and characterization of a phenylalanine ammonia-lyase gene (SmPAL1) from Salvia miltiorrhiza. Mol Biol Rep 36:939–952

    Article  CAS  PubMed  Google Scholar 

  • Wanner LA, Li G, Ware D, Somssich IE, Davis KR (1995) The phenylalanine ammonialyase gene family in Arabidopsis thaliana. Plant Mol Biol 27:327–338

    Article  CAS  PubMed  Google Scholar 

  • Wesley SV, Helliwell CA, Smith NA, Wang MB, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA, Robinson SP, Gleave AP, Green AG, Waterhouse PM (2001) Construct design for efficient, effective and high throughput gene silencing in plants. Plant J 27:581–590

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Wang Z (2007) Genetic transformation of the medicinal plant Salvia miltiorrhiza by Agrobacterium tumefaciens-mediated method. Plant Cell Tissue Organ Cult 88:175–184

    Article  CAS  Google Scholar 

  • Yan Q, Shi M, Ng J, Wu JY (2006) Elicitor-induced rosmarinic acid accumulation and secondary metabolism enzyme activities in Salvia miltiorrhiza hairy roots. Plant Sci 170:853–858

    Article  CAS  Google Scholar 

  • Zhang H, Yu C, Jia JY, Leung SW, Siow YL, Man RY, Zhu DY (2002) Contents of four active components in different commercial crude drugs and preparations of Danshen (Salvia miltiorrhiza). Acta Pharmacol Sin 23:1163–1168

    CAS  PubMed  Google Scholar 

  • Zhao SJ, Hu ZB, Liu D, Leung FC (2006) Two divergent members of 4-coumarate:coenzyme A ligase from Salvia miltiorrhiza Bunge: cDNA cloning and functional study. J Integr Plant Biol 48:1355–1364

    Article  CAS  Google Scholar 

  • Zheng W, Wang SY (2001) Antioxidant activity and phenolic compounds in selected herbs. J Agric Food Chem 49:5165–5170

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Zuo Z, Chow MS (2005) Danshen: an overview of its chemistry, pharmacology, pharmacokinetics, and clinical use. J Clin Pharmacol 45:1345–1359

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the 10th–11th “five-year technique project” of the Ministry of Science and Technology of the People’s Republic of China (2004BA701A35, 2006BAI06A12-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhezhi Wang.

Electronic Supplementary Material

Following files are unfortunately not in the Publisher's archive anymore:

  • Supplementary material 1 (TIFF 104 kb)

  • Supplementary material 2 (TIFF 430 kb)

  • Supplementary material 3 (TIFF 284 kb)

Supplementary material 4 (DOC 24 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, J., Wang, Z. RNAi-mediated suppression of the phenylalanine ammonia-lyase gene in Salvia miltiorrhiza causes abnormal phenotypes and a reduction in rosmarinic acid biosynthesis. J Plant Res 124, 183–192 (2011). https://doi.org/10.1007/s10265-010-0350-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-010-0350-5

Keywords

Navigation