Skip to main content
Log in

Beetle visitations, and associations with quantitative variation of attractants in floral odors of Homalomena propinqua (Araceae)

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

This study investigated floral visitations of two beetles, Parastasia bimaculata (Scarabaeidae) and Chaloenus schawalleri (Chrysomelidae), and examined associations between beetle visitations and variation in attractant traits, such as quantitative variations of attractants in floral odors and heat generation of spadices in Homalomena propinqua (Araceae). Observations showed P. bimaculata visited pistillate-phase inflorescences most frequently during heat generation, whereas C. schawalleri visited regardless of floral stages and heat generation. Chemical analyses of five dominant components of floral odors showed quantities of 2-butanol, veratrole, and α-pinene during the pistillate phase were the most abundant during all floral stages, and increased during heat generation. When testing combinations of these five authentic chemicals, some mixtures including 2-butanol or veratrole or both attracted both beetles, and veratrole attracted C. schawalleri. These results strongly suggested that the increased emission of floral odor attractants which accompanied heat generation influences floral visitations by P. bimaculata, but not by C. schawalleri. We therefore hypothesize that P. bimaculataaculata is a reliable pollinator, and that variation in attractant traits is a honest signal for P. bimaculata to seek rewards. In contrast, C. schawalleri can detect the signal even at low levels, and so visits inflorescences steadily during all floral stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andrews ES, Theis N, Adler LS (2007) Pollinator and herbivore attraction to Cucurbita floral volatiles. J Chem Ecol 33:1682–1691

    Article  PubMed  CAS  Google Scholar 

  • Armbruster WS, Antonsen L, Pélabon C (2005) Phenotypic selection on Dalechampia blossoms: honest signaling affects pollination success. Ecology 86:3323–3333

    Article  Google Scholar 

  • Ayasse M, Schiestl FP, Paulus HF, Löfstedt C, Hansson B, Ibarra F, Francke W (2000) Evolution of reproductive strategies in the sexual deceptive orchid Ophrys sphegodes: how does flower-specific variation odor signals influence reproductive success? Evolution 54:1995–2006

    PubMed  CAS  Google Scholar 

  • Bernhardt P (2000) Convergent evolution and adaptive radiation of beetle-pollinated angiosperms. Plant Syst Evol 222:293–320

    Article  Google Scholar 

  • Cresswell JE, Galen C (1991) Frequency-dependent selection and adaptive surfaces for floral character combinations: the pollination of Polemonium viscosum. Amer Nat 138:1342. doi:10.1086/285290

    Article  Google Scholar 

  • Dafni A, Potts SG (2004) The role of flower inclination, depth, and height in the preferences of a pollinating beetle (Coleoptera: Glaphyridae). J Insect Behav 17:823–834

    Article  Google Scholar 

  • Dohzono I, Suzuki K, Murata J (2004) Temporal changes in calyx tube length of Clematis stans (Ranunculaceae): a strategy for pollination by two bumble bee species with different proboscis lengths. Am J Bot 91:2051–2059. doi:10.3732/ajb.91.12.2051

    Article  Google Scholar 

  • Dötterl S, Wolfe LM, Jürgens A (2005) Qualitative and quantitative analyses of flower scent in Silene latifolia. Phytochemistry 66:203–213

    Article  PubMed  Google Scholar 

  • Fukaya M, Akino T, Yasuda T, Yasui H, Wakamura S (2004) Visual and olfactory cues for mate orientation behaviour in male white-spotted longicorn beetle, Anoplophora malasiaca. Entomol Exp Appl 111:111–115

    Article  Google Scholar 

  • Fukaya M, Wakamura S, Arakaki N, Yasui H, Yasuda T, Akino T (2006) Visual ‘pinpoint’ location associated with pheromonal cue in males of the black chafer Holotrichia loochooana loochooana (Coleoptera: Scarabaeidae). Appl Entomol Zool 41:99–104

    Article  Google Scholar 

  • Fumero-Cabán JJ, Meléndez-Ackerman EJ (2007) Relative pollination effectiveness of floral visitors of Pitcairnia angustifolia (Bromeliaceae). Am J Bot 94:419–424. doi:10.3732/ajb.94.3.419

    Article  Google Scholar 

  • Garcia-Robledo C, Kattan G, Murcia C, Quintero-Marin P (2004) Beetle pollination and fruit predation of Xanthosoma daguense (Araceae) in an Andean cloud forest in Colombia. J Trop Ecol 20:459–469

    Article  Google Scholar 

  • Gauthier M-PL, Barabe D, Brueau A (2008) Molecular phylogeny of the genus Philodendron (Araceae): delimitation and infrageneric classification. Bot J Lin Soc 156:13–27

    Google Scholar 

  • Gibernau M (2003) Pollinators and visitors of aroid inflorescences. Aroideana 26:66–83

    Google Scholar 

  • Gibernau M, Barabé D (2002) Pollination ecology of Philodendron squamiferum (Araceae). Can J Bot 80:316–320

    Article  Google Scholar 

  • Gibernau M, Barabé D, Cerdan P, Dejean A (1999) Beetle pollination of Philodendron solimoesense (Araceae) in French Guiana. Int J Plant Sci 160:1135–1143

    Article  PubMed  Google Scholar 

  • Gibernau M, Barabé D, Labat D (2000) Flowering and pollination of Philodendron melinonii (Araceae) in French Guiana. Plant Biol 2:331–334

    Article  Google Scholar 

  • Gibernau M, Barabé D, Labat D, Cerdan P, Dejean A (2003) Reproductive biology of Montrichardia arborescens (Araceae) in French Guiana. J Trop Ecol 19:103–107. doi:10.1017/S0266467403003134

    Article  Google Scholar 

  • Gottsberger G, Silberbauer-Gottsberger I (1991) Olfactory and Visual Attraction of Eriscelis emarginata (Cyclocephalini, Dynastinae) to the inflorescence of Philidendron selloum (Araceae). Biotropica 23:23–28

    Article  Google Scholar 

  • Johnson SD, Steiner KE (2000) Generalization versus specialization in plant pollination systems. Trends Ecol Evol 15:140–143

    Article  PubMed  Google Scholar 

  • Juric M, Bertelsen G, Mortensen G, Petersen MA (2003) Light-induced colour and aroma changes in sliced, modified atmosphere packaged semi-hard cheeses. Int Dairy J 13:239–249

    Article  CAS  Google Scholar 

  • Kato M (1996) Plant-pollinator interactions in the understory of a lowland mixed dipterocarp forest in Sarawak. Am J Bot 83:732–743

    Article  Google Scholar 

  • Knudsen JT, Eriksson R, Gershenzon J (2006) Diversity and distribution of floral scent. Bot Rev 72:1–120

    Article  Google Scholar 

  • Kumano Y, Yamaoka R (2006) Synchronization between temporal variation in heat generation, floral scents and pollinator arrival in the beetle-pollinated tropical Araceae, Homalomena propinqua. Plant Spec Biol 21:173–183

    Article  Google Scholar 

  • Maeto K, Fukuyama K, Sajap AS, Wahab YA (1995) Selective attraction of flower-visiting beetles (Coleoptera) to floral fragrance chemicals in tropical rain forest. Jap J Entomol 63:851–859

    Google Scholar 

  • Mayo SJ, Bogner J, Boyce PC (1997) The genera of Araceae. Royal botanical gardens, Kew, UK

    Google Scholar 

  • Metcalf RL, Lampman RL (1991) Evolution of diabroticite rootworm beetle (Chrysomelidae) receptors for Cucurbita blossom volatiles. Proc Natl Acad Sci USA 88:1869–1872

    Article  PubMed  CAS  Google Scholar 

  • Momose K (2005) Beetle pollination in tropical rainforests. In: Roubik D, Sakai S, Hamid AA (eds) Pollination ecology and the rain forest––Sarawak studies. Springer, Berlin, pp 104–127

    Chapter  Google Scholar 

  • Momose K, Yumoto T, Nagamitsu T, Kato M, Nagamasu H, Sakai S, Harrison RD, Itioka T, Hamid AA, Inoue T (1998) Pollination biology in a lowland dipterocarp forest in Sarawak, Malaysia. I. Characteristics of the plant-pollinator community in a lowland dipterocarp forest. Am J Bot 85:1477–1501

    Article  Google Scholar 

  • Montaño A, Sánchez AH, Casado FJ, de Castro A, Rejano L (2003) Chemical profile of industrially fermented green olives of different varieties. Food Chem 82(2):297–302. doi:10.1016/S0308-8146(02)00593-9

    Article  Google Scholar 

  • Ratnayake RMCS, Gunatilleke IAUN, Wijesundara DSA, Saunders RMK (2007) Pollination ecology and breeding system of Xylopia championii (Annonaceae): curculionid beetle pollination, promoted by floral scents and elevated floral temperatures. Int J Plant Sci 168:1255–1268

    Article  CAS  Google Scholar 

  • Rochat D, Morin J-P, Kakul T, Beaudoin-Ollivier L, Prior R, Renou M, Malosse I, Stathers T, Embupa S, Laup S (2002) Identification of pheromone synergists in American palm weevil, Rhynchophorus palmarum, and attraction of related Dynamis borassi. J Chem Ecol 26:155–187

    Article  Google Scholar 

  • Sahli HF, Conner JK (2007) Visitation, effectiveness, and efficiency of 15 genera of visitors to wild radish, Raphanus raphanistrum (Brassicaceae). Am J Bot 94:203–209. doi:10.3732/ajb.94.2.203

    Article  Google Scholar 

  • Sakai S (2000) Reproductive phenology of gingers in a lowland mixed dipterocarp forest in Borneo. J Trop Ecol 16:337–354

    Article  Google Scholar 

  • Sakai S, Inoue T (1999) A new pollination system: dung-beetle pollination discovered in Orchidantha inouei (Lowiaceae, Zingiberales) in Sarawak, Malaysia. Am J Bot 86:56–61

    Article  Google Scholar 

  • Sakai S, Kato M, Inoue T (1999) Three pollination guilds and variation in floral characteristics of Bornean gingers (Zingiberaceae and Costaceae). Am J Bot 86:646–658

    Article  PubMed  Google Scholar 

  • Schiestl FP, Ayasse M (2001) Post-pollination emission of a repellent compound in a sexually deceptive orchid: a new mechanism for maximizing reproductive success? Oecologia 126:531–534

    Article  Google Scholar 

  • Seymour RS, Matthews PGD (2006) The role of thermogenesis in the pollination biology of the Amazon waterlily Victoria amazonica. Ann Bot 98:1129–1135. doi:10.1093/aob/mcl201

    Article  PubMed  Google Scholar 

  • Seymour RS, Gibernau M, Ito K (2003a) Thermogenesis and respiration of inflorescences of the dead horse arum Helicodiceros muscivorus, a pseudothermoregulatory aroid associated with fly pollination. Funct Ecol 17:886–894

    Article  Google Scholar 

  • Seymour RS, White CR, Gibernau M (2003b) Heat reward for insect pollinators. Nature 426:243–244

    Article  PubMed  CAS  Google Scholar 

  • Seymour RS, Terry I, Roemer RB (2004) Respiration and thermogenesis by cones of the Australian cycad Macrozamia machinii. Funct Ecol 18:925–930. doi:10.1111/j.0269-8463.2004.00918.x

    Article  Google Scholar 

  • Silberbauer-Gottsberger I, Gottsberger G, Webber AC (2003) Morphological and functional flower characteristics of new and old world Annonaceae with respect to their mode of pollination. TAXON 52:701–718

    Article  Google Scholar 

  • Stebbins GL (1971) Adaptive radiation of reproductive characteristics in angiosperms, I: pollination mechanisms. Am Nat 1(1):307–326. doi:10.1146/annurev.es.01.110170.001515

    Google Scholar 

  • Stensmyr MC, Urru I, Collu I, Celander M, Hansson BS, Angioy A-M (2002) Rotting smell of dead-horse arum florets. Nature 420:625–626

    Article  PubMed  CAS  Google Scholar 

  • Stránský K, Valterová I (1999) Release of volatiles during the flowering period of Hydrosme rivieri (Araceae). Phytochemistry 52:1387–1390

    Article  Google Scholar 

  • Theis N, Raguso RA (2005) The effect of pollination on floral fragrance in Thistles. J Chem Ecol 31:2581–2600

    Article  PubMed  CAS  Google Scholar 

  • Tollsten L (1993) A multivariate approach to post-pollination changes in the floral scent of Platanthera bifolia (Orchidaseae). Nord J Bot 13:495–499

    Article  Google Scholar 

  • Ventura MU, Martins M, Pasini A (2000) Responses of Diabrotica speciosa and Cerotom arcuata Tingomariana (Coleoptera: Chrysomelidae) to volatile attractants. Fla Entomol 83:403–410

    Article  CAS  Google Scholar 

  • Waser NM (1979) Pollinator availability as a determinant of flowering time in ocotillo (Fouquieria splendens). Oecologia 39:107–121

    Article  Google Scholar 

  • Whitmore TC (1984) Tropical rainforests of the far east, 2nd ed. Oxford University Press, New York, USA

    Google Scholar 

  • Wright GA, Lutmerding A, Dudareva N, Smith BH (2005) Intensity and the ratios of compounds in the scent of snapdragon flower affect scent discrimination by honeybees (Apis mellifera). J Comp Physiol A 191:105–114

    Article  CAS  Google Scholar 

  • Young HJ (1986) Beetle pollination of Dieffenbachia longispatha (Araceae). Am J Bot 73:931–944

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to J. Kendawang and L. Chong for permission to conduct this study and two anonymous referees for their valuable comments. We thank M. Ichikawa and T. Nakashizuka for their help with our field study. We also thank H. Takizawa and K. Kishimoto-Yamada for identification of the chrysomelid beetle, and K. Senoh, T. Miyake, and T. Akino for many helpful comments. This study was financially supported by RIHN Research Project 2–2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuko Kumano-Nomura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumano-Nomura, Y., Yamaoka, R. Beetle visitations, and associations with quantitative variation of attractants in floral odors of Homalomena propinqua (Araceae). J Plant Res 122, 183–192 (2009). https://doi.org/10.1007/s10265-008-0204-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-008-0204-6

Keywords

Navigation