Skip to main content

Advertisement

Log in

Induced expression of oryzain α gene encoding a cysteine proteinase under stress conditions

  • Short Communication
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Oryzain α-A, a cysteine proteinase gene was cloned from rice (Oryza sativa L. cv. Aichi-asahi) leaves infected with Magnaporthe grisea. The protein sequence deduced for oryzain α-A shares high identity with that of oryzain α, a gene expressed in germinating rice seed. Oryzain α-A gene expression was induced by the blast fungus, Magnaporthe grisea, and the transcript level was even higher in the compatible interaction with rice than in the incompatible interaction. Expression of oryzain α-A was also inducible by wounding, ultraviolet radiation, and treatment with salicylic acid and abscisic acid, with no expression induced by methyl jasmonate. The function of oryzain α-A in cell death in rice is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Avrova AO, Stewart HE, De Jong WD, Heilbronn J, Lyon GD, Birch PR (1999) A cysteine protease gene is expressed early in resistant potato interactions with Phytophthora infestans. Mol Plant Microbe Interact 12:1114–1119

    Article  PubMed  CAS  Google Scholar 

  • Birkenmeier FG, Ryan AC (1998) Wound signaling in tomato plants, evidence that ABA is not a primary signal for defense gene activation. Plant Physiol 117:687–693

    Article  PubMed  CAS  Google Scholar 

  • Bode W, Huber R (1992) Natural protein proteinase inhibitors and their interaction with proteinases. Eur J Biochem 204:433–451

    Article  PubMed  CAS  Google Scholar 

  • Cervantes E, Rodriguez A, Nicolas G (1994) Ethylene regulates the expression of a cysteine proteinase gene during germination of chickpea (Cicer arietinum L.). Plant Mol Biol 25:207–715

    Article  PubMed  CAS  Google Scholar 

  • Chomcznski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Google Scholar 

  • Clarke JD, Volko SM, Ledford H, Ausubel FM, Dong X (2000) Roles of salicylic acid, jasmonic acid, and ethylene in cpr-induced resistance in Arabidopsis. Plant Cell 12:2175–2190

    Article  PubMed  CAS  Google Scholar 

  • D’Silva I, Porier GG, Heath MC (1998) Activation of cysteine proteases in cowpea plants during the hypersensitive response, a form of programmed cell death. Exp Cell Res 245:389–399

    Article  PubMed  CAS  Google Scholar 

  • Del Pozo O, Lam E (1998) Caspases and programmed cell death in the hypersensitive response of plants and pathogens. Curr Biol 8:1129–1132

    Article  PubMed  Google Scholar 

  • Doarse SH, Narvaez-Vasquez J, Conconi A, Ryan CA (1995) Salicylic acid inhibits synthesis of proteinase inhibitor in tomato leaves induced by systemin and jasmonic acid. Plant Physiol 108:1741–1746

    Google Scholar 

  • Dong X (1998) SA, JA, ethylene, and disease resistance in plant. Curr Opin Plant Biol 1:316–323

    Article  PubMed  CAS  Google Scholar 

  • Hammond-Kosack KE, Jones JDG (1996) Resistance gene-dependent plant defense responses. Plant Cell 8:1773–1791

    Article  PubMed  CAS  Google Scholar 

  • Hao L, Hsiang T, Goodwin PH (2006) Role of two cysteine proteinases in the susceptible response of Nicotiana benthamiana to Colletotrichum destructivum and hypersensitive response to Pseudomonas syringae pv tomato. Plant Sci 170:1001–1009

    Article  CAS  Google Scholar 

  • Herde O, Atzorn R, Fisahn J, Wasternack C, Willmitzer L, Pena-Cortes H (1996) Localized wounding by heat initiates the accumulation of proteinase inhibitor II in abscisic cid-deficient plants by triggering jasmonic acid biosynthesis. Plant Physiol 112:853–860

    PubMed  CAS  Google Scholar 

  • Ho SL, Tong WF, Yu SM (2000) Multiple mode regulation of a cysteine proteinase gene expression in rice. Plant Physiol 122:57–66

    Article  PubMed  CAS  Google Scholar 

  • Jones JT, Mullet JE (1995) A salt- and dehydration-inducible pea gene, Cyp15a, encodes a cell-wall protein with sequence similarity to cysteine proteases. Plant Mol Biol 28:1055–1065

    Article  PubMed  CAS  Google Scholar 

  • Jones ML, Larsen PB, Woodson WR (1995) Ethylene-regulated expression of a carnation cysteine proteinase during flower petal senescence. Plant Mol Biol 28:505–512

    Article  PubMed  CAS  Google Scholar 

  • Koizumi M, Yamaguchi-Shinozaki K, Tsuji H, Shinozaki K (1993) Structure and expression of two genes that encodes distinct drought –inducible cysteine proteinases in Arabidopsis thaliana. Gene 129:175–182

    Article  PubMed  CAS  Google Scholar 

  • Mikkonen A, Porali I, Cercos M, Ho TH (1996) A major cysteine proteinase, EPB, in germinating barley seeds: structure of two intronless genes and regulation of expression. Plant Mol Biol 31:239–254

    Article  PubMed  CAS  Google Scholar 

  • Moriyasu Y, Ohsumi Y (1996) Autophagy in tobacco suspension-cultured cells in response to sucrose starvation. Plant Physiol 111:1233–1241

    PubMed  CAS  Google Scholar 

  • Pena-Cortes H, Prat S, Atzorn R, Wasternack C, Willmitzer L (1996) Abscisic acid-deficient plants do not accumulate proteinase inhibitor II following systemin treatment. Planta 198:447–451

    Article  CAS  Google Scholar 

  • Pena-Cortes H, Sanchez-Serrano JJ, Mertens R, Willmitzer L, Prat S (1989) Abscisic acid is involved in the wound-induced expression of the proteinase inhibitor II gene in potato and tomato. Proc Natl Acad Sci USA 86:9851–9855

    Article  PubMed  CAS  Google Scholar 

  • Peng YL, Shishiyama J (1988) Temporal sequence of cytological events in rice leaves affected with Pyricularia oryzae. Can J Bot 66:730–735

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor, New York

    Google Scholar 

  • Schaffer MA, Fischer RL (1988) Analysis of mRNAs that accumulate in response to low temperature identifies a thiolprotease in tomato. Plant Physiol 87:431–436

    Article  PubMed  CAS  Google Scholar 

  • Seo S, Sano H, Ohashi Y (1997) Jasmonic acid in wound signal-transduction pathways. Physiol Plant 101:740–745

    Article  CAS  Google Scholar 

  • Shirasu K, Nakajima H, Rajasekhar VK (1997) Salicylic acid potentiates an agonist-dependent gain control that amplifies pathogen signals in the activation of defense mechanisms. Plant Cell 9:261–270

    Article  PubMed  CAS  Google Scholar 

  • Thomma BPHJ, Eggermont K, Penninckx IAMA, Mauch-Mani B, Vogelsang R, Cammue BPA, Broekaert WF (1998) Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct pathogens. Proc Natl Acad Sci USA 95:15107–15111

    Article  PubMed  CAS  Google Scholar 

  • Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281:1312–1316

    Article  PubMed  CAS  Google Scholar 

  • Valent B, Chumley FG (1991) Molecular genetic analysis of the rice blast fungus, Magnapothe grisea. Annu Rev Phytopathol 29:443–467

    Article  CAS  PubMed  Google Scholar 

  • Wasternack C, Parthier B (1997) Jasmonate-signaled plant gene expression. Trends Plant Sci 2:302–307

    Article  Google Scholar 

  • Watanabe H, Abe K, Emori Y, Hosoyama H, Arai S (1991) Molecular cloning and gibberellin-inducible expression of multiple cysteine proteinases of rice seeds (oryzains). J Biol Chem 266:16897–16902

    PubMed  CAS  Google Scholar 

  • Wu CX, Zhou SY, Zhang Q, Zhao WS, Peng YL (2006) Molecular cloning and differential expression of a γ-aminobutyrate transaminase gene, OsGABA-T, in rice (Oryza sativa) leaves infected with blast fungus. J Plant Res 119:663–669

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Basic Research Program of China (973 Program) 2006CB101905. We thank Dr. Tom Hsiang of the University of Guelph, Canada, for his editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youliang Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, Y., Zhao, W. & Peng, Y. Induced expression of oryzain α gene encoding a cysteine proteinase under stress conditions. J Plant Res 120, 465–469 (2007). https://doi.org/10.1007/s10265-007-0080-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-007-0080-5

Keywords

Navigation