Skip to main content

Advertisement

Log in

Molecular cloning and differential expression of an γ-aminobutyrate transaminase gene, OsGABA-T, in rice (Oryza sativa) leaves infected with blast fungus

  • Short Communication
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

γ-Aminobutyrate transaminase (GABA-T) catalyzes the conversion of GABA to succinic semialdehyde. Using differential display PCR and cDNA library screening, a full-length GABA-T cDNA (OsGABA-T) was isolated from rice (Oryza sativa) leaves infected with an incompatible race of Magnaporthe grisea. The deduced amino acid sequence comprises 483 amino acid residues and shares 85–69% identity with GABA-T sequences from other plants. OsGABA-T expression is induced by blast fungus infection, mechanical wounding and ultraviolet radiation in rice leaves and is not detected in normal rice organs. This gene is also induced by defense signal molecules such as salicylic acid and abscisic acid, but not by jasmonic acid. Our data suggest that OsGABA-T (GABA shunt) may play a role in restricting the levels of cell death during the host–pathogen interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Aluru M, Curry J, O’Connell M (1998) Nucleotide sequence of a probable aminotransferase gene (accession no. AF085149) from Habanero Chile. Plant Physiol 118:1102

    Google Scholar 

  • Ansari MI, Lee RH, Chen SG (2005) A novel senescence-associated gene encoding γ-aminobutyric acid (GABA):pyruvate transaminase is upregulated during rice leaf senescence. Physiol Plant 123:1–8

    Article  CAS  Google Scholar 

  • Arazi T, Baum G, Snedden WA, Shelp BJ, Fromm H (1995) Molecular and biochemical analysis of calmodulin interaction with calmodulin-binding domain of plant glutamate decarboxylase. Plant Physiol 108:551–561

    Article  PubMed  CAS  Google Scholar 

  • Bouché N, Fromm H (2004) GABA in plants: just a metabolite? Trends Plant Sci 9:110–115

    Article  PubMed  CAS  Google Scholar 

  • Bouché N, Fait A, Bouchez D, Moller SG, Fromm H (2003a) Mitochondrial succinic- semialdehyde dehydrogenase of the γ-aminobutyrate shunt is required to restrict levels of reactive oxygen intermediates in plants. Proc Natl Acad Sci USA 100:6843–6848

    Article  CAS  Google Scholar 

  • Bouché N, Lacombe B, Fromm H (2003b) GABA signaling: a conserved and ubiquitous mechanism. Trends Cell Biol 13:607–610

    Article  CAS  Google Scholar 

  • Bown AW, Shelp BJ (1997) The metabolism and function of γ-aminobutyric acid. Plant Physiol 115:1–5

    PubMed  CAS  Google Scholar 

  • Breitkreuz KE, Shelp BJ (1995) Subcellular compartmentation of 4-aminobutyrate shunt in protoplasts from developing soybean cotyledons. Plant Physiol 108:99–103

    PubMed  CAS  Google Scholar 

  • Breitkreuz KE, Allan WL, Van Cauwenberghe OR, Jakobs C, Talibi D, André B, Shelp BJ (2003) A novel γ-hydroxybutyrate dehydrogenase. Identification and expression of an Arabidopsis cDNA and potential role under oxygen deficiency. J Biol Chem 278:41552–41556

    Article  PubMed  CAS  Google Scholar 

  • Clarke JD, Volko SM, Ledford H, Ausubel FM, Dong X (2000) Roles of salicylic acid, jasmonic acid, and ethylene in cpr-induced resistance in Arabidopsis. Plant Cell 12:2175–2190

    Article  PubMed  CAS  Google Scholar 

  • Chomeznski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Google Scholar 

  • Crawford LA, Bown AW, Breitkreuz KE, Guinel FC (1994) The synthesis of γ-aminobutyric acid in response to treatments reducing cytosolic pH. Plant Physiol 104:865–871

    PubMed  CAS  Google Scholar 

  • Doares SH, Naraez-Vasquez J, Conconi A, Ryan CA (1995) Salicylic acid inhibits synthesis of proteinase inhibitors in tomato leaves induced by systemin and jasmonic acid. Plant Physiol 108:1741–1746

    PubMed  CAS  Google Scholar 

  • Dong Xingnian (1998) SA, JA, ethylene, and disease resistance in plant. Curr Opin Plant Biol 1:316–323

    Article  Google Scholar 

  • Fait A, Yellin A, Fromm H (2005) GABA shunt deficiencies and accumulation of reactive oxygen intermediates: insight from Arabidopsis mutants. FEBS Lett 579:415–420

    Article  PubMed  CAS  Google Scholar 

  • Hammond-Kosack, Jones JDG (1996) Resistance gene-dependent plant defense responses. Plant Cell 8:1773–1791

    Article  PubMed  CAS  Google Scholar 

  • Jakobs C, Jaeken J, Gibson KM (1993) Inherited disorders of GABA metabolism. J Inherit Metab Dis 16:704–715

    Article  PubMed  CAS  Google Scholar 

  • Jeon SG, Bahn JH, Jang JS, Park J (2000) Human brain GABA transaminase: tissue distribution and molecular expression. Eur J Biochem 267:5601–5607

    Article  PubMed  CAS  Google Scholar 

  • Kathiresan A, Tung P, Chinappa CC, Reid DM (1997) γ-Aminobutyric acid stimulates ethylene biosynthesis in sunflower. Plant Physiol 115:129–135

    Article  PubMed  CAS  Google Scholar 

  • Kinnersley AM, Turano FJ (2000) Gamma aminobutyric acid (GABA) and plant responses to stress. Crit Rev Plant Sci 19:479–509

    Article  CAS  Google Scholar 

  • Lee RH, Wang CH, Huang LT, Chen SC (2001) Leaf senescence in rice plants: cloning and characterization of senescence up-regulated genes. J Exp Bot 52:1117–1121

    Article  PubMed  CAS  Google Scholar 

  • Leon J, Rojo E, Sanchez-Serrano J (2001) Wound signaling in plants. J Exp Bot 52:1–9

    Article  PubMed  CAS  Google Scholar 

  • Liang P, Pardee AB (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257:967–971

    Article  PubMed  CAS  Google Scholar 

  • Ma H (2003) Plant reproduction: GABA gradient, guidance and growth. Curr Biol 13(21):834–836

    Article  CAS  Google Scholar 

  • Maras B, Sweeney G, Barra F, John R (1992) The amino acid sequence of glutamate decarboxylase from Escherichia coli. Evolutionary relationship between mammalian and bacterial enzyme. Eur J Biochem 204:93–98

    Article  PubMed  CAS  Google Scholar 

  • Medina-Kauwe LK, Tobin AJ, De Meirleir L, Jaeken J, Jakobs C, Nyhan WL, Gibson KM (1999) 4–Aminobutyrate aminotransferase (GABA-transaminase) deficiency. J Inherit Metab Dis 22:414–427

    Article  PubMed  CAS  Google Scholar 

  • Palanivelu R, Brass L, Edlund AF, Preuss D (2003) Pollen tube growth and guidance is regulated by POP2, an Arabidopsis gene that controls GABA levels. Cell 114:47–59

    Article  PubMed  CAS  Google Scholar 

  • Pena-Cortes H, Alberecht T, Prat S (1993) Aspirin prevents wound-induced gene expression in tomato leaves by blocking jasmonic acid biosynthesis. Planta 191:123–128

    Article  CAS  Google Scholar 

  • Peng YL, Shishiyama J (1988) Temporal sequence of cytological events in rice leaves affected with Pyroculria oryzae. Can J Bot 66:730–735

    Google Scholar 

  • Pieterse CMJ, van Loon LC (1999) Salicylic acid-independent plant defense pathway. Trends Plant Sci 4:52–58

    Article  PubMed  Google Scholar 

  • Prell J, Boesten B, Poole P (2002) The Rhizobium leguminosarum bv. viciae VF39– aminobutyrate (GABA) aminotransferase gene (gabT) is induced by GABA and highly expressed in bacteroids. Microbiology 148:615–623

    PubMed  CAS  Google Scholar 

  • Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD (1996) Systemic acquired resistance. Plant Cell 8:1809–1819

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1988) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sano H, Seo S, Orudge E, Youssefian S, Ishizuka K, Ohashi Y (1994) Expression of the gene for a small GTP binding protein in transgenic tabacco elevates endogenous cytokinin levels, abnormally induced salicylic acid in response to wounding, and increases resistance to tabacco mosaic virus infection. Proc Natl Acad Sci USA 91:10556–10560

    Article  PubMed  CAS  Google Scholar 

  • Satyanarayan V, Nair PM (1986) Enhanced operation of 4-aminobutyrate shunt in irradiated potato tubers. Phytochemistry 25:1801–1805

    Article  CAS  Google Scholar 

  • Satyanarayan NV, Nair PM (1990) Metabolism, enzymology and possible roles of 4-aminobutyrate in higher plants. Phytochemistry 29:367–375

    Article  Google Scholar 

  • Shelp BJ, Bown AW, Mclean MD (1999) Metabolism and functions of gamma-aminobutyric acid. Trends Plant Sci 4:446–452

    Article  PubMed  Google Scholar 

  • Snedden WA, Arazi T, Fromm H, Shelp BJ (1995) Calcium/calmodulin activation of soybean glutamate decarboxylase. Plant Physiol 108:543–549

    PubMed  CAS  Google Scholar 

  • Solomon PS, Oliver RP (2002) Evidence that γ-aminobutyric acid is a major nitrogen source during Cladosporium fulvum infection of tomato. Planta 214:414–420

    Article  PubMed  CAS  Google Scholar 

  • Streeter JG, Thompson JF (1972) In vivo and in vitro studies onγ-aminobutyric acid metabolism with the radish plant (Raphanus sativus L.). Plant Physiol 49:579–584

    PubMed  CAS  Google Scholar 

  • Tanase S, Kojima H, Morino Y (1979) Pyridoxal 5′-phosphate binding site of pig heart alanine aminotransferase. Biochemistry 18:3002–3007

    Article  PubMed  CAS  Google Scholar 

  • Tuin LG, Shelp BJ (1994) In situ [14C]glutamate metabolism by developing soybean cotyledons I. Metabolic routes. J Plant Physiol 143:1–7

    CAS  Google Scholar 

  • Tuin LG, Shelp BJ (1996) In situ [14C]glutamate metabolism by developing soybean cotyledons. II. The importance of glutamate decarboxylation. J Plant Physiol 147:714–720

    CAS  Google Scholar 

  • Valent B, Chumley FG (1991) Molecular genetic analysis of the rice blast fungus, Magnapothe grisea. Annu Rev Phytopathol 29:443–467

    Article  CAS  PubMed  Google Scholar 

  • Varju P, Katarova Z, Madarasz E, Szabo G (2001) GABA signalling during development: new data and old questions. Cell Tissue Res 305:239–246

    Article  PubMed  CAS  Google Scholar 

  • Van Cauwenberghe OR, Makhmoudova A, McLean MD, Clark SM, Shelp BJ (2002) Plant pyruvate-dependent gamma-aminobutyrate transaminase: identification of an Arabidopsis cDNA and its expression in Escherichia coli. Can J Bot 80:933–941

    Article  Google Scholar 

  • Wallace W, Secor J, Schrader L E (1984) Rapid accumulation of gamma-aminobutyric acid and alanine in soybean leaves in response to an abrupt transfer to lower temperature, darkness, or mechanical manipulation. Plant Physiol 75:170–175

    Article  PubMed  CAS  Google Scholar 

  • Ward ER, Ukness SJ, Williams SC, Dincher SS, Wiederhold DL, Alexander DC, Ahl-Goy P, Métraux JP, Ryals JA (1991) Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell 3:1085–1094

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Zhang R, Liang P (1997) Differential screening of differential display cDNA products by reverse northern. Method Mol Biol 85:87–93

    CAS  Google Scholar 

  • Zik M, Arazi T, Snedden WA, Fromm H (1998) Two isoforms of glutamate decarboxylase in Arabidopsis are regulated by calcium/calmodulin and differ in organ distribution. Plant Mol Biol 37:967–975

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This research was supported by a project from Yunnan Provincial Collaboration Program (Cloning and Functional Analysis of Rice Genes Induced by Magnaporthe grisea, no. 98ZN08)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youliang Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, C., Zhou, S., Zhang, Q. et al. Molecular cloning and differential expression of an γ-aminobutyrate transaminase gene, OsGABA-T, in rice (Oryza sativa) leaves infected with blast fungus. J Plant Res 119, 663–669 (2006). https://doi.org/10.1007/s10265-006-0018-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-006-0018-3

Keywords

Navigation