Skip to main content
Log in

Resurrection of an ancestral gene: functional and evolutionary analyses of the Ngrol genes transferred from Agrobacterium to Nicotiana

  • Invited Article
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

The Ngrol genes, which have high similarity in sequence to the rol genes of Agrobacterium rhizogenes, are present in the genome of untransformed plants of Nicotiana glauca. It is thought that bacterial infection resulted in the transfer of the Ngrol genes to plants early in the evolution of the genus Nicotiana, since several species in this genus contain rol-like sequences but others do not. Plants transformed with the bacterial rol genes exhibit various developmental and morphological changes. The presence of rol-like sequences in plant genomes is therefore thought to have contributed to the evolution of Nicotiana species. This paper focuses on studies of the Ngrol genes in present-day plants and during the evolution of the genus Nicotiana. The functional sequences of several Ngrol genes may have been conserved after their ancient introduction from a bacterium to the plant. Resurrection of an ancestral function of one of the Ngrol genes, as examined by physiological and evolutionary analyses, is also described. The origin of the Ngrol genes is then considered, based on results of molecular phylogenetic analyses. The effects of the horizontal transfer of the Ngrol genes and mutations in the genes are discussed on the plants of the genus Nicotiana during evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4A–E
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adey NB, Tollefsbol TO, Sparks AB, Edgell MH, Hutchison III CA (1994) Molecular ressurection of an extinct ancestral promoter for mouse L1. Proc Natl Acad Sci USA 91:1569–1573

    CAS  PubMed  Google Scholar 

  • Aoki S (2002) Functional and evolutionary analysis of Ngrol genes: horizontal gene transfer from Agrobacterium to the genome of the Nicotiana species. J Plant Res 115(Suppl):196

    Article  Google Scholar 

  • Aoki S, Ito M (2000) Molecular phylogeny of Nicotiana (Solanaceae) based on nucleotide sequence of matK gene. Plant Biol 2:316–324

    Article  CAS  Google Scholar 

  • Aoki S, Syōno K (1999a) Synergistic function of rolB, rolC, ORF13 and ORF14 of TL-DNA of Agrobacterium rhizogenes in hairy root induction in Nicotiana tabacum. Plant Cell Physiol 40:252–256

    CAS  Google Scholar 

  • Aoki S, Syōno K (1999b) Horizontal gene transfer and mutation: Ngrol genes in the genome of Nicotiana glauca. Proc Natl Acad Sci USA 96:13229–13234

    Article  CAS  PubMed  Google Scholar 

  • Aoki S, Syōno K (1999c) Function of Ngrol genes in the evolution of Nicotiana glauca: conservation of the function of NgORF13 and NgORF14 after ancient infection by an Agrobacterium rhizogenes-like ancestor. Plant Cell Physiol 40:222–230

    CAS  Google Scholar 

  • Aoki S, Syōno K (2000) A comparison of the function of hairy root induction between Ngrol and Rirol genes in Nicotiana debneyi. Plant Sci 59:183–189

    Article  Google Scholar 

  • Aoki S, Syōno K, Ito M (2001) Analysis of NgrolC gene by the physiological and phylogenetic methods. Plant Cell Physiol 42:s55

    Google Scholar 

  • Aoki S, Kawaoka A, Sekine M, Ichikawa T, Fujita T, Shinmyo A, Syōno K, (1994) The sequence of cellular T-DNA in the genome of Nicotiana glauca that is homologous to ORFs 13 and 14 of the Ri plasmid and the analysis of the expression of the cellular genes in genetic tumors of hybrids between N. glauca and N. langsdorffii. Mol Gen Genet 243:706–710

    CAS  PubMed  Google Scholar 

  • Bayer M (1982) Genetic tumors: physiological aspects of tumor formation in interspecies hybrids, In Kahl G, Shell J (eds) Molecular biology of plant tumors, Academic press, New York, pp 33–67

    Google Scholar 

  • Capone I, Spanò L, Cardarelli M, Bellincampi D, Petit AP, (1989) Induction and growth properties of carrot roots with different complements of Agrobacterium rhizogenes T-DNA. Plant Mol Biol 13:43–52

    CAS  PubMed  Google Scholar 

  • Cardarelli M, Mariotti D, Pomponi M, Spanò L, Capone I, Costantino P (1987) Agrobacterium rhizogenes T-DNA genes capable of inducing hairy root phenotype. Mol Gen Genet 210:111–115

    Google Scholar 

  • Chilton MD, Drummond MH, Merlo DJ, Sciaky D, Montoya AL, Gordon MP (1977) Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11:263–271

    Article  CAS  PubMed  Google Scholar 

  • David C, Chilton MD, Tempé J (1984) Conservation of T-DNA in plants regenerated from hairy root cultures. Biotechnology 2:73–76

    CAS  Google Scholar 

  • Dehio C, Grossmann K, Schell J, Schmülling T (1993) Phenotype and hormonal status of transgenic tobacco plants overexpressing the rolA gene of Agrobacterium rhizogenes T-DNA. Plant Mol Biol 23:1199–1210

    CAS  PubMed  Google Scholar 

  • Frundt C, Meyer AD, Ichikawa T, Meins Jr F (1998) A tobacco homologue of the Ri-plasmid ORF 13 gene causes cell proliferation in carrot root disks. Mol Gen Genet 259:559–568

    Article  CAS  PubMed  Google Scholar 

  • Furner IJ, Huffman GA, Amasino RM, Garfinkel DJ, Gordon MP, Nester EW (1986) An Agrobacterium transformation in the evolution of the genus Nicotiana. Nature 319:422–427

    CAS  Google Scholar 

  • Hansen G, Vaubert D, Heron JH, Clerot D, Tempé J, Brevet J (1993) Phenotypic effects of overexpression of Agrobacterium rhizogenes T-DNA ORF13 in transgenic tobacco plants are mediated by diffusible factor(s). Plant J 4:581–585

    Article  CAS  Google Scholar 

  • Huffman GA, White FF, Gordon MP, Nester EW, (1984) Hairy root-inducing plasmid: physical map and homology to tumor-inducing plasmids. J Bacteriol 157:269–276

    CAS  PubMed  Google Scholar 

  • Ichikawa T, Ozeki Y, Syōno K. (1990) Evidence for the expression of the rol genes of Nicotiana glauca in genetic tumors of N. glauca x N. langsdorffii. Mol Gen Genet 220:177–180

    CAS  PubMed  Google Scholar 

  • Ichikawa T, Syōno K (1988) Tumorization-redifferentiation system of tobacco genetic tumor. Plant Cell Physiol 29:1373–1378

    Google Scholar 

  • Ichikawa T, Syōno K (1991) Tobacco genetic tumors. Plant Cell Physiol 32:1123–1128

    CAS  Google Scholar 

  • Intrieri MC, Buiatti M (2001) The horizontal transfer of Agrobacterium rhizogenes genes and the evolution of the genus Nicotiana. Mol Phylogenet Evol 20:100–110

    Article  CAS  PubMed  Google Scholar 

  • Jermann TM, Opitz JG, Stackhouse J, Benner SA (1995) Reconstructing the evolutionary history of the artiodactyl ribonuclease superfamily. Nature 374:57–59

    Article  CAS  PubMed  Google Scholar 

  • Jouanin L (1984) Restriction map of an agropine-type Ri plasmid and its homologies with Ti plasmids. Plasmid 12:91–102

    CAS  PubMed  Google Scholar 

  • Kehr AE (1965) The growth and development of spontaneous plant tumors. Encyclopedia of plant physiology, vol XV/2. Springer, Berlin Heidelberg New York, pp 184–196

  • Kostoff D (1930) Tumors and other malformations on certain Nicotiana hybrids. Zentralbl Barkteriol Parasitenkd Inferktionskr Hyg Abt 1: Org 81:244–280

  • Kung SD (1989) Genetic tumors in Nicotiana. Bot Bull Acad Sin 30:231–240

    Google Scholar 

  • Lemcke K, Schmülling T (1998) Gain of function assays identify non-rol genes from Agrobacterium rhizogenes TL-DNA that alter plant morphogenesis or hormone sensitivity. Plant J 15:423–433

    Article  CAS  PubMed  Google Scholar 

  • Limami MA, Sun L, Douat C, Helgeson J, Tepfer D (1998) Natural genetic transformation by Agrobacterium rhizogenes. Plant Physiol 118:543–550

    Article  CAS  PubMed  Google Scholar 

  • Malcom BA, Wilson KP, Matthews BW, Kirsch JF, Wilson AC (1990) Ancestral lysozymes reconstructed, neutrality tested, and thermostability linked to hydrocarbon packing. Nature 345:86–89

    Article  PubMed  Google Scholar 

  • Meyer AD, Ichikawa T, Meins Jr F (1995) Horizontal gene transfer: regulated expression of tobacco homologue of the Agrobacterium rhizogenes rolC gene. Mol Gen Genet 249:265–273

    CAS  PubMed  Google Scholar 

  • Montoya AL, Chilton MD, Gordon MP, Sciaky D, Nester EW (1977) Octopine and nopaline metabolism in Agrobacterium tumefaciens and crown gall tumor cells: role of plasmid genes. J Bacteriol 129:101–107

    CAS  PubMed  Google Scholar 

  • Moriuchi H, Okamoto C, Nishihama R, Yamashita I, Machida Y, Tanaka N (2004) Nuclear localization and interaction of RolB with plant 14-3-3 proteins correlates with induction of adventitious roots by the oncogne rolB. Plant J 38:260–275

    Article  CAS  PubMed  Google Scholar 

  • Näf U (1958) Studies on tumor formation in Nicotiana hybrids. I. The classification of the parents into two etiologically significant groups. Growth 22:167–180

    CAS  PubMed  Google Scholar 

  • Nagata N, Kosono S, Sekine M, Shinmyo A, Syōno K (1995) The regulatory functions of the rolB and rolC genes of Agrobacterium rhizogenes are conserved in homologous genes (Ngrol) of Nicotiana glauca in tobacco genetic tumors. Plant Cell Physiol 36:1003–1012

    CAS  PubMed  Google Scholar 

  • Nagata N, Kosono S, Sekine M, Shinmyo A, Syōno K (1996) Different expression patterns of promoters of the NgrolB and NgrolC genes during the development of tobacco genetic tumors. Plant Cell Physiol 37:489–498

    CAS  Google Scholar 

  • Nilsson O, Olsson O (1997) Getting to the root: the role of the Agrobacterium rhizogenes rol genes in the formation of hairy roots. Physiol Plant 100:463–473

    Article  CAS  Google Scholar 

  • Oono Y, Handa T, Kanaya K, Uchimiya H (1987) The TL-DNA gene of Ri plasmids responsible for dwarfness of tobacco plants. Jpn J Genet 62:501–505

    Google Scholar 

  • Oono Y, Kanaya K, Uchimiya H (1990) Early flowering in transgenic tobacco plants possessing the rolC gene of Agrobacterium rhizogenes Ri plasmid. Jpn J Genet 65:7–16

    CAS  Google Scholar 

  • Oono Y, Suzuki T, Toki S, Uchimiya H (1993) Effects of the over-expression of the rolC gene on leaf development in transgenic periclinal chimeric plants. Plant Physiol 34:745–752

    CAS  Google Scholar 

  • Schmulling T, Schell J, Spena A (1988) Single genes of Agrobacterium rhizogenes influence plant development, EMBO J 7:2621–2629

    Google Scholar 

  • Sekine M, Ichikawa T, Syōno K (1993) A tumorization-redifferentiation system involving tobacco genetic tumors in tissue culture. J Plant Res Spec Issue 3:83–95

    Google Scholar 

  • Sinkar VP, Pyrhoud F, White FF, Nester EW, Schder J (1988a) rolA locus of the Ri plasmid directs developmental abnomalities in transgenic tobacco plants. Genes Dev 2:688–697

    CAS  PubMed  Google Scholar 

  • Sinkar VP, White FF, Furner IJ, Abrahamsen M, Pythoud F, Gordon LMP (1988b) Reversion of aberrant plants transformed with Agrobacterium rhizogenes is associated with the transcriptional inactivation of the TL-DNA genes. Plant Physiol 86:584–590

    CAS  Google Scholar 

  • Slightom JL, Durand-Tardif M, Jouanin L, Tepfer D (1986) Nucleotide sequence analysis of TL-DNA of Agrobacterium rhizogenes agropine-type plasmid: identification of open reading frames. J Biol Chem 261:108–121

    CAS  PubMed  Google Scholar 

  • Smith HH (1968) Recent cytogenetic studies in the genus Nicotiana. Adv Genet 14:1–54

    Google Scholar 

  • Smith HH (1972) Plant genetic tumors. Progr Exp Tumor Res 15:138–164

    CAS  PubMed  Google Scholar 

  • Spanò L, Pomponi M, Costantino P, van Slogteren GMS, Tempé J (1982) Identification of T-DNA in the root-inducing plasmid of the agropine type Agrobacterium rhizogenes 1855. Plant Mol Biol 1:291–300

    Google Scholar 

  • Spena A, Schmülling T, Koncz C, Schell J (1987) Independent and synergistic activity of rolA, B and C loci in stimulating abnormal growth in plants, EMBO J 6:3891–3899

    Google Scholar 

  • Stewart CB (1995) Active ancestral molecules. Nature 374:12–3

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K, Yamashita I, Tanaka N (2002) Tobacco plants were transformation by Agrobacterium rhizogenes infection during their evolution. Plant J 32:775–787

    Article  CAS  PubMed  Google Scholar 

  • Tepfer D (1982) in 2e Colloque sur les Recherches Fruitieres, Centre Technique Interprofessionnel des Fruits et Legumes, Bordeaux, France, pp 47–59

  • Tepfer D (1984) Transformation of several species of higher plants by Agrobacterium rhizogenes: sexual transmission of the transferred genotype and phenotype. Cell 37:959–967

    Article  CAS  PubMed  Google Scholar 

  • Thornton JW, Need E, Crews D (2003) Resurrecting the ancestral steroid receptor: ancient origin of estrogen signaling. Science 301:1714–1717

    Article  CAS  PubMed  Google Scholar 

  • Udagawa M, Aoki S, Syono K (2004) Expression analysis of the promoter of the NgORF13 gene during thedevelopment of tobacco genetic tumor. Plant Cell Physiol (in press)

  • White FF (1986) The exchange of genetic material between higher plants and Agrobacterium. In Levy SB, Novick RP (eds) Antibiotic resistance genes: ecology, transfer and expression, Cold Spring Harbor, New York, pp 45–54

  • White FF, Ghidossi G, Gordon MP, Nester EW (1982) Tumor induction by Agrobacterium rhizogenes involves the transfer of plasmid DNA to the plant genome. Proc Natl Acad Sci USA 79:3193–3197

    CAS  Google Scholar 

  • White FF, Garfinkel DJ, Huffman GA, Gordon MP, Nester EW (1983) Sequence homologous to Agrobacterium rhizogenes T-DNA in the genomes of uninfected plants. Nature 301:348–350

    CAS  Google Scholar 

  • White FF, Taylor BH, Huffman GA, Gordon MP, Nester EW (1985) Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of Agrobacterium rhizogenes. J Bacteriol 164:33–44

    CAS  PubMed  Google Scholar 

  • Zhang J, Zhang Y, Rosenberg HF (2002) Adaptive evolution of a duplicated pancreatic ribonuclease gene in a leaf-eating monkey. Nature Genet 30:411–415

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author is particularly grateful to Dr. K. Syōno (Nippon Women’s University), Dr. T. Ichikawa (RIKEN), and Dr. M. Ito (University of Tokyo) for their guidance in the present study. The author also wishes to thank Dr. J. Schell, Dr. M.P. Gordon (University of Washington, USA), Dr. D. Tepfer (INRA, France), Dr. L. Jouanin (INRA, France), Dr. S.G. Beck (Herbario Nacional de Bolivia, Bolivia), Mr. R. Zeballos (Herbario Nacional de Bolivia, Bolivia), Mr. T. Watanabe (Bolivia), Dr. H. Kamada (University of Tsukuba), Dr. Y. Ohashi (Natural Institute of Science and Technology), Dr. H. Nishida (Chuo University), and Dr. H. Tsukaya (Natural Institute for Basic Biology) for providing materials or the opportunity for overseas research. The author expresses gratitude to Japan Tobacco Inc. for kindly providing plant materials for species of the genus Nicotiana. This study was supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science and the Ministry of Education, Culture, Sport, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seishiro Aoki.

Additional information

Seishiro Aoki is the recipient of the Botanical Society Award for Young Scientist, 2002.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aoki, S. Resurrection of an ancestral gene: functional and evolutionary analyses of the Ngrol genes transferred from Agrobacterium to Nicotiana. J Plant Res 117, 329–337 (2004). https://doi.org/10.1007/s10265-004-0163-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-004-0163-5

Keywords

Navigation