Skip to main content
Log in

Extending slow manifold near generic transcritical canard point

  • Published:
Acta Mathematicae Applicatae Sinica, English Series Aims and scope Submit manuscript

Abstract

We consider the dynamics of planar fast-slow systems near generic transcritical type canard point. By using geometric singular perturbation theory combined with the recently developed blow-up technique, the existence of canard cycles, relaxation oscillations and solutions near the attracting branch of the critical manifold is established. The asymptotic expansion of the parameter for which canard exists is obtained by a version of the Melnikov method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benoit, E., Callot, J.F., Diener, F., Diener, M. Chasse au canard. Collectanea Mathematica, 31-32: 37–119 (1981)

    MathSciNet  MATH  Google Scholar 

  2. Benoit, E. Perturbation singuli re en dimension trois: Canards en un point pseudo-singulier neoud. Bulletin de la Société Mathématique de France, 129-1: 91–113 (2001)

    Article  MATH  Google Scholar 

  3. Brfns, M., Bar-Eli, K. Canard explosion and excitation in a model of the Belousov-Zhabotinskii. J. Phys. Chem., 1991

    Google Scholar 

  4. Callot, J.L. Champs lents-rapides complexes à une dimension lente. Annales scientifiques de l’Ecole Normale Supérieure, 4, 26: 149–173 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chiba, H. Periodic orbits and chaos in fast-slow systems with Bogdanov-Takens type fold points. J. Differential Equations, 250: 112–160 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dumortier, F. Singularities of vector field on the plane. J. Differential Equations, 23(1): 53–106 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dumortier, F. Techniques in the theory of local bifurcations: Blow-up, normal forms, nilpotent bifurcations, singular perturbations. In: Bifurcations and Periodic Orbits of Vector Fields (D. Szlomiuk, Ed.), Kluwer, Dordrecht, 1993

    Google Scholar 

  8. Dumortier, F., Roussarie, F. Canard cycles and center manifold. Men. Amer. Math. Soc., 121, 1996

  9. Dumortier, F., Roussarie, F. Geometric singular perturbation theory beyond normal hyperbolicity. In: Multiple-Time-Scale Dynamical Systems (C.K.R.T. Jones and A. Khibnik, Eds.) IMA Volumes in Mathematics and its Applications, Vol. 122, 29–64, Springer-Verlag, Berlin/New York, 2001

    Article  MathSciNet  MATH  Google Scholar 

  10. Dumortier, F., Llibre, J., Artés, J.C. Qualitative theory of planar differential systems, Universitext. Springer-Verlag, Berlin, 2006.

    MATH  Google Scholar 

  11. Diener, M. Regularizing microscopes and rivers. SIAM J. Appl. Math., 25: 148–173 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Eckhaus, W. Relaxation oscillations including a standard chase on French ducks. In: Asymptotic Analysis II, Lecture Notes in Mathematics, Vol. 985, 449–494, Springer-Verlag, Berlin/New York, 1983

    Article  MathSciNet  MATH  Google Scholar 

  13. Fenichel, N. Grometric singular perturbation theory for ordinary differential equations. J. Differential Equations, 31: 53–98 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  14. Haberman, R. Slowly varying jump and transition phenomena associated with algebraic bifurcation problems. SIAM J. Appl. Math., 37: 69–106 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jones, C.K.R.T. Geometric singular perturbation theory. In: Dynamical Systems (Montencatini Terme, 1994), in: Lecture Notes in Mathematics, vol. 1609, Springer, 1995, 44–118

    MathSciNet  MATH  Google Scholar 

  16. Krupa, M., Szmolyan, P. Extending geometric singular perturbation theory to nonhyperbolic points-fold and canard points in two dimensions. SIAM J. Math. Anal., 33(2): 286–314 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Krupa, M., Szmolyan, P. Relaxation oscillation and canard explosion. J. Differential Equations, 174: 312–368 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Krupa, M., Szmolyan, P. Extending slow manifold near transcritical and pitchfork singularites. Nonlinearity, 14(6): 1473–1491 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. van Gils, S., Krupa, M., Szmolyan, P. Asymptotic expansions using blow-up. Z. Angew. Math. Phys., 56(3): 369–397 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lebovitz, N.R., Schaar, R.J. Exchange of stabilities in autonomous systems. Stud. Appl. Math., 54: 229–260 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lebovitz, N.R., Schaar, R.J. Exchange of stabilities in autonomous systems II. Vertical bifurcations Stud. Appl. Math., 56: 1–50 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mishchenko, E.F., Kolesov, Yu.S., Kolesov, A.Yu., Rozov, N.Kh. Asymptotic Methods in Singularly Perturbed Systems. Consultants Bureau, New York, London, 1994

    Book  MATH  Google Scholar 

  23. Szmolyan, P., Wechselberger, M. Canards in R3. J. Differential Equations, 177: 419–453 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wiggins, S. Normally Hyperbolic Invariant Manifolds in Dynamical Systems. Springer-Verlag, New York, 1994

    Book  MATH  Google Scholar 

  25. Xie, F., Han, M.A. Existence of canards under non-generic conditions. Chin. Ann. Math., 30B(3): 239–250 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-bo Lu.

Additional information

Supported by the National Natural Science Foundation of China (No. 71501130), Natural Science Foundation of Hebei Province (A2015407063).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Hb., Ni, Mk. & Wu, Lm. Extending slow manifold near generic transcritical canard point. Acta Math. Appl. Sin. Engl. Ser. 33, 989–1000 (2017). https://doi.org/10.1007/s10255-017-0713-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10255-017-0713-y

Keywords

2000 MR Subject Classification

Navigation