Skip to main content
Log in

Global existence, asymptotic behavior and uniform attractors for non-autonomous thermoelastic systems

  • Published:
Acta Mathematicae Applicatae Sinica, English Series Aims and scope Submit manuscript

Abstract

In this paper, we first establish the global existence and asymptotic behavior of solutions by using the semigroup method and multiplicative techniques, then further prove the existence of a uniform attractor for a non-autonomous thermoelastic system by using the method of uniform contractive functions. The main advantage of this method is that we need only to verify compactness condition with the same type of energy estimates as that for establishing absorbing sets. Moreover, we also investigate an alternative result of solutions to the semilinear thermoelastic systems by virtue of the semigroup method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burns, J.A., Liu, Y.Z., Zheng, S. On the energy decay of a linear thermoelastic bar. J. Math. Appl., 179: 574–591 (1993)

    MathSciNet  MATH  Google Scholar 

  2. Chepyzhov, V.V., Vishik, M.I. Attractors cal Society. Vol. 49, Rhode Island, 2002

    MATH  Google Scholar 

  3. Chepyzhov, V.V., Pata, V., Vishik, M.I. Averaging of 2D Navier-Stokes equations with singularly oscillating external forces. Nonlinearity, 22: 351–370 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chueshov, I., Lasiecka, I. Long-Time Behavior of Second Order Evolution Equations with Nonlinear Damping. In: Mem. Amer. Math. Soc., Vol.195, No.12, Providence, 2008

    MATH  Google Scholar 

  5. Dafermos, C.M. On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticty. Arch. Rat. Mech. Anal., 29: 241–271 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dafermos, C.M. Asymptotic stability in viscoelasticity. Arch. Rat. Mech. Anal., 37: 297–308 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dafermos, C.M. An abstract Volterra equation with applications to linear viscoelasticity. J. Differential Equations, 7: 554–569 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. Day, W.A. The decay of energy in a viscoelastic body. Mathematika, 27: 268–286 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  9. Desch, W., Miller, R.K. Exponential stabilization of Volterra integrodifferential equations in Hilbert space. J. Differential Equations, 70: 366–389 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  10. Desch, W., Miller, R.K. Exponential stabilization of Volterra integral equations with singular kernels. J. Integ. Eqns. Appl., 1: 397–433 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Green, A.E., Naghdi, P.M. A re-examination of the basic postulates of thermomechanics. Proc. Roc. Soc. London, 432(A): 171–194 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Green, A.E., Naghdi, P.M. On undamped heat waves in an elastic solid. J. Thermal Stresses, 15: 253–264 (1992)

    Article  MathSciNet  Google Scholar 

  13. Green, A.E., Naghdi, P.M. Thermoelasticity without energy dissipation. J. Elasticity, 31: 189–208 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hale, J. Asymptotic behavior and dynamics in infinite dimensions. In: Nonlinear Differential Equations, J. Hale and P. Martinez-Amores, Eds., Pitman, Boston, 1985

    MATH  Google Scholar 

  15. Hansen, S.W. Exponential energy decay in a linear thermoelastic rod. J. Math. Anal. Appl., 167: 429–442 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jiang, S., Racke, R. Evolution equations in thermoelasticity, p Monographs Surveys. Pure Appl. Math. 112, Chapman and Hall/CRC, Boca Raton, 2000

    Google Scholar 

  17. Jiang, S., Munoz Rivera, J.E., Racke, R. Asymptotic stability and global existence in thermoelasticity with symmetry. Quart. Appl. Math., 56(2): 259–275 (1998)

    MathSciNet  MATH  Google Scholar 

  18. Komornik, V., Zuazua, E. A direct method for the boundary stabilization of the wave equation. J. Math. Pures Appl., 69: 33–54 (1990)

    MathSciNet  MATH  Google Scholar 

  19. Lasiecka, I. Global uniform decay rates for the solution to the wave equation with nonlinear boundary conditions. Appl. Anal., 47: 191–212 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lasiecka, I. Stabilization of wave and plate-like equations with nonlinear dissipation on the boundary. J. Differential Equations, 79: 340–381 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lazzari, B. Nibbi, R. On the exponential decay in thermoelasticity without energy dissipation and of type III in presence of an absorbing boundary. J. Math. Anal. Appl., 338: 317–329 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lebeau, G., Zuazua, E. Sur la décroissance non uniforme de l’énergie dans le syst`eme de la thermoelasticté linéaire. C. R. Acad. Sci. Paris. Sér. I Math., 324: 409–415 (1997)

    Article  MathSciNet  Google Scholar 

  23. Lebeau, G., Zuazua, E. Decay rates for the three-dimensional linear system of thermoelasticity. Arch. Rat. Mech. Anal., 148: 179–231 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu, W.J. Partial exact controllability and exponential stability in higher dimensional linear thermoelasticity. ESAIM: Control Optim. Calc. Var., 3: 23–48 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu, K., Liu, Z. On the type of C0-semigroup associated with the abstract linear viscoelastic system. Z. angew. Math. Phys., 47: 1–15 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu, Z., Zheng, S. Exponential stability of the semigroup associated with a thermoelastic system. Quart. Appl. Math., 51: 535–545 (1993)

    MathSciNet  MATH  Google Scholar 

  27. Liu, Z., Zheng, S. On the exponential stability of linear viscoelasticity and thermoviscoelasticity. Quart. Appl. Math., 54: 21–31 (1996)

    MathSciNet  MATH  Google Scholar 

  28. Liu, W.J., Zuazua, E. Uniform stabilization of the higher dimensional system of thermoelasticity with a nonlinear boundary feedback. Quart. Appl. Math., 59: 269–314 (2001)

    MathSciNet  MATH  Google Scholar 

  29. Messaoudi, S.A., Said-Houari, B. Energy decay in a Timoshenko-type system of thermoelasticity of type III. J. Math. Anal. Appl., 348(1): 298–307 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mustafa, M.I. Exponential decay in thermoelastic systems with boundary delay. Abstract Diff. Equat. Appl., 2(1): 1–13 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Oliveira, J.C., Charao, R.C. Stabilization of a locally damped thermoelastic system. Comput. Appl. Math., 27(3): 319–357 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Pata, V., Zucchi, A. Attractors for a damped hyperbolic equation with linear memory. Adv. Math. Sci. Appl., 11: 505–529 (2011)

    MathSciNet  MATH  Google Scholar 

  33. Pazy, A. Semigroups of Linear Operators and Appplications to Partial Differential Equations. Springer-Verlag, New York, 1983

    Book  MATH  Google Scholar 

  34. Pereira, D.C., Menzala, G.P. Exponential stability in linear thermoelasticity: the inhomogeneous case. Appl. Anal., 44: 21–36 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  35. Qin, Y. Nonlinear Parabolic-Hyperbolic Coupled Systems and Their Attractors. Operator Theory, Vol. 184, Advances and Applications, Birkhäuser, Basel-Boston-Berlin, 2008

  36. Qin, Y., Fang, J. Global attractor for a nonlinear thermoviscoelastic model with a non-convex free energy density. Nonlinear Anal., TMA, 65: 892–917 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  37. Quintanilla, R., Racke, R. Stability in thermoelasticity of type III. Disc., Cont. Dyna. Syst., 3B: 383–400 (2003)

    MathSciNet  MATH  Google Scholar 

  38. Reissig, M., Wang, Y.G. Cauchy problems for linear thermoelastic systems of type III in one space variable. Math. Meth. Appl. Sci., 28: 1359–1381 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Temam, R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer-Verlag, New York, 1988

    Book  MATH  Google Scholar 

  40. Wang, T. Exponential stability and inequalities of solutions of abstract functional differential equations. J. Math. Anal., 324: 982–991 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  41. Yang, L., Wang, Y. Propagation of singularities in Cauchy problems for quasilinear thermoelastic systems in three space variables. J. Math. Anal. Appl., 291: 638–652 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhang, X., Zuazua, E. Decay of solutions of the system of thermoelasticity of type III. Comm. Contemp. Math., 5: 25–83 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zheng, S. Nonlinear Parabolic Equations and Hyperbolic-Parabolic Coupled Systems. Pitman Monographs Surveys Pure Applied Mathematics, Vol. 76, Harlow, Longman, 1995

  44. Zheng, S. Nonlinear Evolution Equations. Pitman Monogr. Survey. Pure Appl. Math, Vol. 133, CRC Press, USA, 2004

  45. Zheng, S., Qin, Y. Maximal attractor for the system of one-dimensional polytropic viscous ideal gas. Quart. Appl. Math., 59: 579–599 (2001)

    MathSciNet  MATH  Google Scholar 

  46. Zheng, S., Qin, Y. Universal attractors for the Navier-Stokes equations of compressible and heat-conductive fluid in bounded annular domains in Rn. Arch. Rat. Mech. Anal., 160: 153–179 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  47. Zuazua, E. Uniform Stabilization of the wave equation by nonlinear boundary feedback. SIAM J. Control Optim., 28(2): 466–477 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-ming Qin.

Additional information

Supported by the National Natural Science Foundation of China (No. 11271066; 11671075) and a grant from Shanghai Municipal Eduction Commission (No. 13ZZ048).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Ym., Wei, Th. & Ren, J. Global existence, asymptotic behavior and uniform attractors for non-autonomous thermoelastic systems. Acta Math. Appl. Sin. Engl. Ser. 32, 1015–1034 (2016). https://doi.org/10.1007/s10255-016-0623-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10255-016-0623-4

Keywords

2000 MR Subject Classification

Navigation