Skip to main content

Advertisement

Log in

Cytogenetics analysis as the central point of genetic testing in acute myeloid leukemia (AML): a laboratory perspective for clinical applications

  • Review Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Chromosomal abnormalities in acute myeloid leukemia (AML) have significantly contributed to scientific understanding of its molecular pathogenesis, which has aided in the development of therapeutic strategies and enhanced management of AML patients. The diagnosis, prognosis and treatment of AML have also rapidly transformed in recent years, improving initial response to treatment, remission rates, risk stratification and overall survival. Hundreds of rare chromosomal abnormalities in AML have been discovered thus far using chromosomal analysis and next-generation sequencing. As a result, the World Health Organization (WHO) has categorized AML into subgroups based on genetic, genomic and molecular characteristics, to complement the existing French-American classification which is solely based on morphology. In this review, we aim to highlight the most clinically relevant chromosomal aberrations in AML together with the technologies employed to detect these aberrations in laboratory settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Short NJ, Rytting ME, Cortes JE. Acute myeloid leukaemia. The Lancet. 2018;392(10147):593–606. https://doi.org/10.1016/S0140-6736(18)31041-9.

    Article  Google Scholar 

  2. Gruszka AM, Valli D, Alcalay M. Understanding the molecular basis of acute myeloid leukemias: where are we now? Int J hematol oncol. 2017;6(2):43–53. https://doi.org/10.2217/ijh-2017-0002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Meyer SC, Levine RL. Translational implications of somatic genomics in acute myeloid leukaemia. Lancet Oncol. 2014;15(9):e382–94.

    Article  CAS  PubMed  Google Scholar 

  4. Arber DA. Acute Myeloid Leukemia. In: Hematopathology: a volume in the series: foundations in diagnostic pathology. Amsterdam: Elsevier, 2018; 429–466.e5. https://doi.org/10.1016/B978-0-323-47913-4.00014-8.

  5. Arber DA, Orazi A, Hasserjian RP, et al. International consensus classification of myeloid neoplasms and acute leukemia: integrating morphological, clinical, and genomic data. Blood. 2022;140(11):1200–28. https://doi.org/10.1182/blood.2022015850.

    Article  CAS  PubMed  Google Scholar 

  6. Khoury JD, Solary E, Abla O, et al. The 5th edition of the World health organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms. Leukemia. 2022;36(7):1703–19. https://doi.org/10.1038/s41375-022-01613-1.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mitelman F, Johansson B, Mertens F, editors. Mitelman Database of chromosome aberrations and gene fusions in cancer. 2010. Available from: http://cgap.nci.nih.gov/Chromosomes/Mitelman

  8. Bendari M, Khoubila N, Cherkaoui S, Hda N, Qachouh M, Lamchahab M, Quessar A. Current cytogenetic abnormalities in acute myeloid leukemia. In: Çelik TA, Dey S, editors. Chromosomal Abnormalities. London: IntechOpen; 2020.

    Google Scholar 

  9. Rooij JD, Zwaan CM, van den Heuvel-Eibrink M. Pediatric AM: From biology to clinical management. J Clin Med. 2015;4:127–49.

    Article  PubMed  PubMed Central  Google Scholar 

  10. McGowan-Jordan J, Simons A, Scmid M. International Standing Committee on Human Cytogenomic Nomenclature. Karger, Basel, Switzerland: ISCN: An International System for Human Cytogenomic Nomenclature; 2016

  11. Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: Rationale and important changes. Blood. 2009;114(5):937–51.

    Article  CAS  PubMed  Google Scholar 

  12. Cheng Y, Wang Y, Wang H, Chen Z, Lou J, Wang H, et al. Cytogenetic Profile of de Novo Acute Myeloid Leukemia: A Study Based on 1432 Patients in a Single Institution of China Leukemia. Leukemia. 2009;23:1801–6.

    Article  CAS  PubMed  Google Scholar 

  13. Dohner H, Elihu HE, Amadori S, Appelbaum FR, Buchner T, Burnett AK, et al. Diagnosis and management of acute myeloid leukemia In adults: recommendations from an international expert panel, on behalf of the European leukemian. Blood. 2010;114:453–74.

    Article  Google Scholar 

  14. Hoffbrand AV, Moss PAH. Hoffbrand’s essential haematology. 7th ed. Hoboken: Wiley-Blackwell; 2016.

    Google Scholar 

  15. Shugay M, Ortiz de Mendíbil I, Vizmanos JL, Novo FJ. Genomic hallmarks of genes involved in chromosomal translocations in hematological cancer. PLoS Comput Biol. 2012;8(12):e1002797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu M, Ren Y, Wang X, Lu X, Li M, Kim YM, Zhang L. Two rare cases of acute myeloid leukemia with t (8; 16)(p11. 2; p13. 3) and 1q duplication: case presentation and literature review. Mol Cytogenet. 2020;13(1):1–9. https://doi.org/10.1186/s13039-020-00507-0.

    Article  CAS  Google Scholar 

  17. Garba N, Usman MD, .Diagnosis of acute myeloid leukemia: a Review. 2018

  18. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, Vardiman JW. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405. https://doi.org/10.1182/blood-2016-03-643544.

    Article  CAS  PubMed  Google Scholar 

  19. Wafa A, Moassass F, Liehr T, Al-Ablog A, AL-Achkar W. Acute promyelocytic leukemia with the translocation t(15;17)(q22;q21) associated with t(1;2)(q42~43;q11.2~12): A case report. J Med Case Rep Internet. 2016;10(1):1–5. https://doi.org/10.1186/s13256-016-0982-8.

    Article  Google Scholar 

  20. Liquori A, Ibañez M, Sargas C, Sanz MÁ, Barragán E, Cervera J. Acute promyelocytic leukemia: a constellation of molecular events around a single PML-RARA fusion gene. Cancers. 2020;12(3):624. https://doi.org/10.3390/cancers12030624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mannan A, Muhsen IN, Barragán E, Sanz MA, Mohty M, Hashmi SK, Aljurf M. Genotypic and phenotypic characteristics of acute promyelocytic leukemia translocation variants. Hematol Oncol Stem Cell Ther. 2020. https://doi.org/10.1016/j.hemonc.2020.05.007.

    Article  PubMed  Google Scholar 

  22. Liang M, Wang L, Xiao M, Xiong J, Wang J, Wang Z, Zhou J. Clinical significance of increased PML-RARa transcripts after induction therapy for acute promyelocytic leukaemia. Ann Med. 2020;52(5):233–8. https://doi.org/10.1080/07853890.2020.1753886.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Noguera NI, Catalano G, Banella C, Divona M, Faraoni I, Ottone T, Voso MT. Acute promyelocytic leukemia: update on the mechanisms of leukemogenesis, resistance and on innovative treatment strategies. Cancers. 2019;11(10):1591. https://doi.org/10.3390/cancers11101591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lagunas-Rangel FA, Chávez-Valencia V, Gómez-Guijosa MÁ, Cortes-Penagos C. Acute myeloid leukemia—genetic alterations and their clinical prognosis. I J Hematol Oncol Stem Cell Res. 2017;11(4):328.

    Google Scholar 

  25. Fleischmann KK, Pagel P, Von Frowein J, Magg T, Roscher AA, Schmid I. The leukemogenic fusion gene MLL-AF9 alters microRNA expression pattern and inhibits monoblastic differentiation via MIR-511 repression. J Exp Clin Cancer Res. 2016;35(1):1–15. https://doi.org/10.1186/s13046-016-0283-5.

    Article  CAS  Google Scholar 

  26. Rubnitz JE, Raimondi SC, Tong X, Kumar Srivastava D, Razzouk BI, Shurtleff SA, et al. Favorable impact of the t(9;11) in childhood acute myeloid leukemia. J Clin Oncol. 2002;20(9):2302–9.

    Article  CAS  PubMed  Google Scholar 

  27. Masetti R, Bertuccio SN, Guidi V, Cerasi S, Lonetti A, Pession A. Uncommon cytogenetic abnormalities identifying high-risk acute myeloid leukemia in children. Future Oncol. 2020;16(33):2747–62. https://doi.org/10.2217/fon-2020-0505.

    Article  CAS  PubMed  Google Scholar 

  28. Pourrajab F, Zare-Khormizi MR, Hashemi AS, Hekmatimoghaddam S. Genetic characterization and risk stratification of acute myeloid leukemia. Cancer Manag Res. 2020;12:2231. https://doi.org/10.2147/CMAR.S242479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sethapati VR, Jabr RE, Shune L, El Atrouni W, Gonzales PR, Cui W, Golem S. De novo acute myeloid leukemia with combined CBFB-MYH11 and BCR-ABL1 gene rearrangements: a case report and review of Literature. Case Rep Hematol. 2020. https://doi.org/10.1155/2020/8822670.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Xie W, Hu S, Xu J, Chen Z, Medeiros LJ, Tang G. Acute myeloid leukemia with t (8; 16)(p11. 2; p13. 3)/KAT6A-CREBBP in adults. Ann hematol. 2019;98(5):1149–57.

    Article  CAS  PubMed  Google Scholar 

  31. Quessada J, Cuccuini W, Saultier P, Loosveld M, Harrison CJ, Lafage-Pochitaloff M. Cytogenetics of pediatric acute myeloid leukemia: a review of the current knowledge. Genes. 2021;12(6):924. https://doi.org/10.3390/genes12060924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Eason AC, Bunting ST, Peterson JF, Saxe D, Sabnis HS. Acute myeloid leukemia in an infant with t (8; 19)(p11 2; q13) translocation: Case report and a review of the literature. Case reports in hematology. 2019;2019:1–4. https://doi.org/10.1155/2019/4198415.

    Article  Google Scholar 

  33. Pardo Gambarte L, Franganillo Suárez A, Cornago Navascués J, Soto de Ozaeta C, Blas López C, Atance Pasarisas M, et al. ZBTB16-RARα-positive atypical promyelocytic leukemia: a case report. Med (Kaunas). 2022;58(4):3–8.

    Google Scholar 

  34. Zama D, Pikman Y, Pigazzi M, Skoczen S, Ksiazek T, Czogala M, et al. High frequency of fusion gene transcript resulting from t(10;11)(p12;q23) translocation in pediatric acute myeloid leukemia in Poland. Front Pediatr. 2020;1:278.

    Google Scholar 

  35. Kirkpatrick M. How and why chromosome inversions evolve. PLoS Biol. 2010; 8(9). Available from: /pmc/articles/PMC2946949/

  36. Bahoush G, Vafapour M, Kariminejad R. New translocation in acute myeloid leukemia M4 eos. Leuk Res Rep. 2020;14:100209. https://doi.org/10.1016/j.lrr.2020.100209.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ksiazek T, Czogala M, Kaczowka P, Sadowska B, Pawinska-Wasikowska K, Bik-Multanowski M, Balwierz W. High Frequency Of Fusion Gene Transcript Resulting From t (10; 11)(p12; q23) translocation in pediatric acute myeloid leukemia in Poland. Front Pediatr. 2020;8:278. https://doi.org/10.3389/fped.2020.00278.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gadhia Pankaj K, Patel Monika V, Vaniawala Salil N. Role of cytogenetic evaluation in diagnosis of acute myeloid leukemia. Am J Biomed Life Sci. 2016;4(6):98–102. https://doi.org/10.11648/j.ajbls.20160406.13.

    Article  Google Scholar 

  39. Rogers HJ, Hsi ED, Tang G, Wang SA, Bueso-Ramos CE, Lubin D, Morrissette JJ, Bagg A, Cherukuri DP, George TI, Peterson L, Hasserjian RP. Most myeloid neoplasms with deletion of chromosome 16q are distinct from acute myeloid leukemia with Inv (16)(p13. 1q22) a bone marrow pathology group multicenter study. Am J Clin Pathol. 2017;147(4):411–9. https://doi.org/10.1093/AJCP/AQX020.

    Article  CAS  PubMed  Google Scholar 

  40. Stuckey R, Bilbao-Sieyro C, Gómez-Casares MT, Bijja R. A summary of the molecular testing recommended in acute myeloid leukemia. Ann Mol Genet Med. 2020;4(1):012–7. https://doi.org/10.17352/amgm.000007.

    Article  Google Scholar 

  41. Sitges M, Boluda B, Garrido A, Morgades M, Granada I, Barragan E, Martínez MP. Acute myeloid leukemia with inv (3)(q21. 3q26. 2)/t (3; 3)(q21. 3; q26. 2): Study of 61 patients treated with intensive protocols. Eur J Haematol. 2020;105(2):138–47. https://doi.org/10.1111/ejh.13417.

    Article  CAS  PubMed  Google Scholar 

  42. Raya JM, Martín-Santos T, Luño E, Sanzo C, Perez-Sirvent ML, Such E, Grupo Español de Citología Hematológica (GECH), Working Group into the Sociedad Española de Hematología y Hemoterapia (SEHH). Acute myeloid leukemia with inv (3)(q21q26. 2) or t (3; 3)(q21; q26. 2): clinical and biological features and comparison with other acute myeloid leukemias with cytogenetic aberrations involving long arm of chromosome 3. Hematology. 2015;20(8):435–41. https://doi.org/10.1179/1607845415Y.0000000003.

    Article  CAS  PubMed  Google Scholar 

  43. Murati A, Adélaïde J, Popovici C, Mozziconacci MJ, Arnoulet C, Lafage-Pochitaloff M, et al. A further case of acute myelomonocytic leukemia with inv(8) chromosomal rearrangement and MOZ-NCOA2 gene fusion. Int J Mol Med. 2003;12(4):423–8.

    CAS  PubMed  Google Scholar 

  44. Ebert BL. Genetic deletions in AML and MDS. Best Pract Res Clin Haematol. 2010;23(4):457–61. https://doi.org/10.1016/j.beha.2010.09.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nagarajan L. Chromosomal deletions in AML. Cancer Treat Res. 2010;145:59–66. https://doi.org/10.1007/978-0-387-69259-3_4.

    Article  PubMed  Google Scholar 

  46. Balk B, Haferlach T, Meggendorfer M, Kern W, Haferlach C, Stengel A. Impact of 9q deletions on the classification of patients with acute myeloid leukemia. J Cancer Res Clin Oncol. 2019;145(11):2871–4. https://doi.org/10.1007/s00432-019-02908-0.

    Article  PubMed  Google Scholar 

  47. Hartmann L, Haferlach T, Meggendorfer M, Kern W, Haferlach C, Stengel A. Comprehensive molecular characterization of myeloid malignancies with 9q deletion. Leuk Lymphoma. 2019;60(10):2591–3. https://doi.org/10.1080/10428194.2019.158584.

    Article  PubMed  Google Scholar 

  48. Naarmann-de Vries IS, Sackmann Y, Klein F, Ostareck-Lederer A, Ostareck DH, Jost E, Crysandt M. Characterization of acute myeloid leukemia with del (9q)–impact of the genes in the minimally deleted region. Leuk Res. 2019;76:15–23. https://doi.org/10.1016/j.leukres.2018.11.007.

    Article  CAS  PubMed  Google Scholar 

  49. Yang JJ, Park TS, Wan TS. Recurrent cytogenetic abnormalities in acute myeloid leukemia. Cancer Cytogenet. 2017. https://doi.org/10.1007/978-1-4939-6703-2_19.

    Article  Google Scholar 

  50. Herold T, Metzeler KH, Vosberg S, Hartmann L, Jurinovic V, Opatz S, Greif PA. Acute myeloid leukemia with del (9q) is characterized by frequent mutations of NPM1, DNMT3A, WT1 and low expression of TLE4. Genes Chromosom Cancer. 2016;56(1):75–86. https://doi.org/10.1002/gcc.22418.

    Article  CAS  PubMed  Google Scholar 

  51. Ades L, Prebet T, Stamatoullas A, Recher C, Guieze R, Raffoux E, Fenaux P. Lenalidomide combined with intensive chemotherapy in acute myeloid leukemia and higher-risk myelodysplastic syndrome with 5q deletion. Results of a phase II study by the Groupe Francophone Des Myelodysplasies. Haematologica. 2017;102(4):728. https://doi.org/10.3324/haematol.2016.151894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gorshein E, Weber UM, Gore S. Higher-risk myelodysplastic syndromes with del (5q): does the del (5q) matter? Expert Rev Hematol. 2020;13(3):233–9. https://doi.org/10.1080/17474086.2020.1730806.

    Article  CAS  PubMed  Google Scholar 

  53. Tang G, Goswami RS, Liang CS, Bueso-Ramos CE, Hu S, DiNardo C, Medeiros LJ. Isolated del (5q) in patients following therapies for various malignancies may not all be clinically significant. Am J Clin Pathol. 2015;144(1):78–86. https://doi.org/10.1309/AJCPBADO22WXOFHJ.

    Article  CAS  PubMed  Google Scholar 

  54. Zhang R, Kim YM, Wang X, Li Y, Lu X, Sternenberger AR, Lee JY. Genomic copy number variations in the myelodysplastic syndrome and acute myeloid leukemia patients with del (5q) and/or-7/del (7q). Int J Med Sci. 2015;12(9):719. https://doi.org/10.7150/ijms.12612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lee JH, List A, Sallman DA. Molecular pathogenesis of myelodysplastic syndromes with deletion 5q. Eur J Haematol. 2019;102(3):203–9. https://doi.org/10.1111/ejh.13207.

    Article  PubMed  Google Scholar 

  56. Lazarevic VL, Johansson B. Why classical cytogenetics still matters in acute myeloid leukemia. Expert Rev Hematol. 2020;13(2):95–7. https://doi.org/10.1080/17474086.2020.1711733.

    Article  CAS  PubMed  Google Scholar 

  57. Narayanan D, Weinberg OK. How I investigate acute myeloid leukemia. Int J Lab Hematol. 2020;42(1):3–15. https://doi.org/10.1111/ijlh.13135.

    Article  PubMed  Google Scholar 

  58. Pitel BA, Sharma N, Zepeda-Mendoza C, Smadbeck JB, Pearce KE, Cook JM, Vasmatzis G, Sachs Z, Kanagal-Shamanna R, Viswanatha D, Xiao S, Jenkins RB, Xu X, Hoppman NL, Ketterling RP, Peterson JF, Greipp PT, Baughn LB. Myeloid malignancies with 5q and 7q deletions are associated with extreme genomic complexity, biallelic TP53 variants, and very poor prognosis. Blood Cancer J. 2021;11(2):1–4. https://doi.org/10.1038/s41408-021-00416-4.

    Article  Google Scholar 

  59. Veryaskina YA, Titov SE, Kovynev IB, Pospelova TI, Zhimulev IF. Prognostic markers of myelodysplastic syndromes. Med (Lithuania). 2020;56(8):1–16. https://doi.org/10.3390/medicina56080376.

    Article  Google Scholar 

  60. Ravindran A, He R, Ketterling RP, Jawad MD, Chen D, Oliveira JL, Nguyen PL, Viswanatha DS, Reichard KK, Hoyer JD, Go RS, Shi M. The significance of genetic mutations and their prognostic impact on patients with incidental finding of isolated del(20q) in bone marrow without morphologic evidence of a myeloid neoplasm. Blood Cancer J. 2020;10(1):1–9. https://doi.org/10.1038/s41408-020-0275-8.

    Article  Google Scholar 

  61. Awada H, Thapa B, Visconte V. The genomics of myelodysplastic syndromes: origins of disease evolution, biological pathways, and prognostic implications. Cells. 2020;9(11):2512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zahid MF, Malik UA, Sohail M, Hassan IN, Ali S, Shaukat MHS. Cytogenetic abnormalities in myelodysplastic syndromes: an overview. Int J Hematol Oncol Stem Cell Res. 2017;11(3):232–40.

    Google Scholar 

  63. Martín I, Villamón E, Abellán R, Calasanz MJ, Irigoyen A, Sanz G, Such E, Mora E, Gutiérrez M, Collado R, García-Serra R, Tormo M. Myelodysplastic syndromes with 20q deletion: incidence, prognostic value and impact on response to azacitidine of ASXL1 chromosomal deletion and genetic mutations. Br J Haematol. 2021;194(4):708–17. https://doi.org/10.1111/bjh.17675.

    Article  CAS  PubMed  Google Scholar 

  64. Temerik DF, El-Mahdy WT, Ahmed AM. Detection of del (16q) using the CBFB-MYH11 translocation dual fusion probe. Hematol oncol stem cell ther. 2020;14(4):351–2.

    Article  PubMed  Google Scholar 

  65. Simonetti G, Padella A, do Valle IF, Fontana MC, Fonzi E, Bruno S, Baldazzi C, Guadagnuolo V, Manfrini M, Ferrari A, Paolini S, Martinelli G. Aneuploid acute myeloid leukemia exhibits a signature of genomic alterations in the cell cycle and protein degradation machinery. Cancer. 2018;125(5):712–25. https://doi.org/10.1002/cncr.31837.

    Article  CAS  PubMed  Google Scholar 

  66. Boyapati A, Yan M, Peterson LF, Biggs JR, Le Beau MM, Zhang DE. A leukemia fusion protein attenuates the spindle checkpoint and promotes aneuploidy. Blood. 2007;109(9):3963–71. https://doi.org/10.1182/blood-2006-09-045583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Inaba T, Nagamachi A. Revertant somatic mosaicism as a cause of cancer. Cancer Sci. 2021;112(4):1383. https://doi.org/10.1111/cas.14852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Canaani J, Labopin M, Itälä-Remes M, Blaise D, Socié G, Forcade E, Nagler A. Prognostic significance of recurring chromosomal abnormalities in transplanted patients with acute myeloid leukemia. Leukemia. 2019;33(8):1944–52. https://doi.org/10.1038/s41375-019-0439-3.

    Article  CAS  PubMed  Google Scholar 

  69. Kunimoto H, Fukuchi Y, Murakami K, Ikeda J, Teranaka H, Kato I, Nakajima H. Establishment of a high-risk MDS/AML cell line YCU-AML1 and its xenograft model harboring t (3; 3) and MONOSOMY 7. HemaSphere. 2020;4(5):e469. https://doi.org/10.1097/hs9.0000000000000469.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Birdwell C, Fiskus W, Kadia TM, DiNardo CD, Mill CP, Bhalla KN. EVI1 dysregulation: impact on biology and therapy of myeloid malignancies. Blood Cancer J. 2021;11(3):1–14. https://doi.org/10.1038/s41408-021-00457-9.

    Article  Google Scholar 

  71. Hemsing AL, Hovland R, Tsykunova G, Reikvam H. Trisomy 8 in acute myeloid leukemia. Expert Rev Hematol. 2019;12(11):947–58. https://doi.org/10.1080/17474086.2019.1657400.

    Article  CAS  PubMed  Google Scholar 

  72. Moosavi L, Bowen J, Coleman J, Heidari A, Cobos E. Acute Myelogenous Leukemia with Trisomy 8 and Concomitant Acquired Factor VII Deficiency. J Investig Med High Impact case Rep. 2019;7:2324709619872657. https://doi.org/10.1177/2324709619872657.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Vaniawala SN, Patel MV, Chavda PD, Zaveri SH, Gadhia PK. The possible significance of trisomy 8 in acute myeloid leukemia. Int J Res Med Sci. 2017;5:2652–6. https://doi.org/10.18203/2320-6012.ijrms20172464.

    Article  Google Scholar 

  74. Alpermann T, Haferlach C, Eder C, Nadarajah N, Meggendorfer M, Kern W, Schnittger S. AML with gain of chromosome 8 as the sole chromosomal abnormality (+ 8sole) is associated with a specific molecular mutation pattern including ASXL1 mutations in 46.8% of the patients. Leuk res. 2015;39(3):265–72. https://doi.org/10.1016/j.leukres.2014.11.026.

    Article  CAS  PubMed  Google Scholar 

  75. Kakosaiou K, Panitsas F, Daraki A, Pagoni M, Apostolou P, Ioannidou A, Manola KN. ASXL1 mutations in AML are associated with specific clinical and cytogenetic characteristics. Leuk Lymphoma. 2018;59(10):2439–46. https://doi.org/10.1080/10428194.2018.1433298.

    Article  CAS  PubMed  Google Scholar 

  76. Zong X, Yao H, Wen L, Ma L, Wang Q, Yang Z, Depei W. ASXL1 mutations are frequent in de novo AML with trisomy 8 and confer an unfavorable prognosis. Leuk Lymphoma. 2017;58(1):204–6.

    Article  PubMed  Google Scholar 

  77. Bakshi SR, Brahmbhatt MM, Trivedi PJ, Dalal EN, Patel DM, Purani SS, Patel PS. Trisomy 8 in leukemia: A GCRI experience. Indian J Hum genet. 2012;18(1):106. https://doi.org/10.4103/0971-6866.96673.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Saumell S, Solé F, Arenillas L, Montoro J, Valcárcel D, Pedro C, Florensa L. Trisomy 8, a cytogenetic abnormality in myelodysplastic syndromes, is constitutional or not? PLoS ONE. 2015;10(6):e0129375. https://doi.org/10.1371/journal.pone.0129375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. O’Hagan Henderson S, Glaser A, Frietsch JJ, Hochhaus A, Hilgendorf I. The incidental discovery of a constitutional trisomy 21 mosaicism in an adult female with myelodysplastic/myeloproliferative neoplasm. Ann Hematol. 2022;101(4):919–20. https://doi.org/10.1007/s00277-021-04655-0.

    Article  PubMed  Google Scholar 

  80. Abdelrahman A, Hasan E, Abdelgawad S, Sallam MH. Acute myeloid leukemia, M1 with trisomy 1, 8, and 21: a case report of a rare complex karyotype. Egypt J Haematol. 2016;41(2):106. https://doi.org/10.4103/1110-1067.186415.

    Article  Google Scholar 

  81. Strati P, Daver N, Ravandi F, Pemmaraju N, Pierce S, Garcia-Manero G, Nazha A, Kadia T, Jabbour E, Borthakur G, Faderl S. Biological and clinical features of trisomy 21 in adult patients with acute myeloid leukemia. Bone. 2014;23(1):1–7. https://doi.org/10.1016/j.clml.2013.05.020.Biological.

    Article  Google Scholar 

  82. de Castro CPM, Cadefau M, Cuartero S. The mutational landscape of myeloid leukaemia in down syndrome. Cancers. 2021;13(16):1–18. https://doi.org/10.3390/cancers13164144.

    Article  CAS  Google Scholar 

  83. Mateos MK, Barbaric D, Byatt S-A, Sutton R, Marshall GM. Down syndrome and leukemia: insights into leukemogenesis and translational targets. Transl Pediatr. 2015;4(2):76–92. https://doi.org/10.3978/j.issn.2224-4336.2015.03.03.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Laurent AP, Kotecha RS, Malinge S. Gain of chromosome 21 in hematological malignancies: lessons from studying leukemia in children with down syndrome. Leukemia. 2020;34(8):1984–99. https://doi.org/10.1038/s41375-020-0854-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Shimada A. Profile of down syndrome–associated malignancies: epidemiology, clinical features and therapeutic aspects. Pediatr Hematol Oncol J. 2021;6(2):63–72. https://doi.org/10.1016/j.phoj.2021.01.001.

    Article  Google Scholar 

  86. Schmidt MP, Colita A, Ivanov AV, Coriu D, Miron IC. Outcomes of patients with down syndrome and acute leukemia: a retrospective observational study. Medicine. 2021;100(40):e27459. https://doi.org/10.1097/MD.0000000000027459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Koczkodaj D, Muzyka-Kasietczuk J, Chocholska S, Podhorecka M. Prognostic significance of isochromosome 17q in hematologic malignancies. Oncotarget. 2021;12(7):708. https://doi.org/10.18632/ONCOTARGET.27914.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Daneshbod Y, Kohan L, Taghadosi V, Weinberg OK, Arber DA. Prognostic significance of complex karyotypes in acute myeloid leukemia. Curr Treat Options Oncol. 2019;20(2):15. https://doi.org/10.1007/s11864-019-0612-y.

    Article  PubMed  Google Scholar 

  89. Piccolomo A, Schifone CP, Strafella V, Specchia G, Musto P, Albano F. Immunomodulatory drugs in acute myeloid leukemia treatment. Cancers. 2020;12(9):2528. https://doi.org/10.3390/cancers12092528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Han SY, Mrózek K, Voutsinas J, Wu Q, Morgan EA, Vestergaard H, Yeung CC. Secondary cytogenetic abnormalities in core-binding factor AML harboring inv (16) vs t (8; 21). Blood Adv. 2021;5(10):2481–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Brukman-Jimenez SA, Bobadilla-Morales L, Corona-Rivera JR, Chávez-Panduro PA, Ortega-de-la-Torre C, Santana-Bejarano UF, Torres-Anguiano E, Mendoza-Maldonado L, Sánchez-Zubieta FA, Corona-Rivera A. Sole trisomy 6 an uncommon finding in pediatric acute myeloid leukemia, probably associated to bad prognosis. Mol Cytogenet. 2020;13(1):1–7. https://doi.org/10.1186/s13039-020-00509-y.

    Article  Google Scholar 

  92. Lazarevic VL, Rosso A, Juliusson G, Antunovic P, Derolf ÅR, Deneberg S, Möllgård L, Uggla B, Wennström L, Wahlin A, Höglund M, Lehmann S, Johansson B. Incidence and prognostic significance of isolated trisomies in adult acute myeloid leukemia: a population-based study from the Swedish AML registry. Eur J Haematol. 2017;98(5):493–500. https://doi.org/10.1111/ejh.12861 (Epub 2017 Mar 9 PMID: 28152233).

    Article  CAS  PubMed  Google Scholar 

  93. Chilton L, Hills RK, Burnett AK, Harrison CJ. The prognostic significance of trisomy 4 in acute myeloid leukaemia is dependent on age and additional abnormalities. Leukemia. 2016;30:2264–7. https://doi.org/10.1038/leu.2016.200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Knudson AG, et al. Chromosomal deletion and retinoblastoma. N Engl J Med. 1976;295:1120–3.

    Article  PubMed  Google Scholar 

  95. Liu Y, Chen C, Xu Z, et al. Deletions linked to TP53 loss drive cancer through p53-independent mechanisms. Nature. 2016;531:471–5. https://doi.org/10.1038/nature17157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Fitzgibbon J, Smith LL, Raghavan M, Smith ML, Debernardi S, Skoulakis S, et al. Association between acquired uniparental disomy and homozygous gene mutation in acute myeloid leukemias. Cancer Res. 2005;65:9152–4.

    Article  CAS  PubMed  Google Scholar 

  97. Griffiths M, Mason J, Rindl M, Akiki S, McMullan D, Stinton V, et al. Acquired isodisomy for chromosome 13 is common in AML, and associated with FLT3-itd mutations (letter). Leukemia. 2005;19:2355–8.

    Article  CAS  PubMed  Google Scholar 

  98. Renneville A, Roumier C, Biggio V, et al. Cooperating gene mutations in acute myeloid leukemia: a review of the literature. Leukemia. 2008;22:915–31. https://doi.org/10.1038/leu.2008.19.

    Article  CAS  PubMed  Google Scholar 

  99. Gaymes TJ, Mohamedali A, Eiliazadeh AL, Darling D, Mufti GJ. FLT3 and JAK2 mutations in acute myeloid leukemia promote interchromosomal homologous recombination and the potential for copy neutral loss of heterozygosity. Can Res. 2017;77(7):1697–708.

    Article  CAS  Google Scholar 

  100. Baker SD, Zimmerman EI, Wang YD, Orwick S, Zatechka DS, Buaboonnam J, Neale GA, Olsen SR, Enemark EJ, Shurtleff S, Rubnitz JE, Mullighan CG, Inaba H. Emergence of polyclonal FLT3 tyrosine kinase domain mutations during sequential therapy with sorafenib and sunitinib in FLT3-ITD-positive acute myeloid leukemia. Clin Cancer Res Off J Am Assoc Cancer Res. 2013;19(20):5758–68. https://doi.org/10.1158/1078-0432.CCR-13-1323.

    Article  CAS  Google Scholar 

  101. Dufour A, Schneider F, Hoster E, Benthaus T, Ksienzyk B, Schneider S, Kakadia PM, Sauerland MC, Berdel WE, Büchner T, Wörmann B, Braess J, Subklewe M, Hiddemann W, Bohlander SK, Spiekermann K. AML CG study group monoallelic CEBPA mutations in normal karyotype acute myeloid leukemia: independent favorable prognostic factor within NPM1 mutated patients. Ann Hematol. 2012;91(7):1051–63. https://doi.org/10.1007/s00277-012-1423-4 (Epub 2012 Feb 24 PMID: 22362118).

    Article  PubMed  Google Scholar 

  102. Walker CJ, Kohlschmidt J, Eisfeld AK, et al. Genetic characterization and prognostic relevance of acquired uniparental disomies in cytogenetically normal acute myeloid leukemia. Clin Cancer Res. 2019;25(21):6524–31. https://doi.org/10.1158/1078-0432.CCR-19-0725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Horgan C, Kartsios C, Nikolousis E, Shankara P, Kishore B, Lovell R, Murthy V, Rudzki Z, Dyer S, Holtom P, Thompson G, Kanellopoulos AG. First case of near haploid philadelphia negative B-Cell acute lymphoblastic leukaemia relapsing as acute myeloid leukemia following allogeneic hematopoietic stem cell transplantation. Leuk Res Rep. 2020;14:100213. https://doi.org/10.1016/j.lrr.2020.100213.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Caspersson T, Zech L, Johansson C. Differential binding of alkylating fluorochromes in human chromosomes. Exp Cell Res. 1970;60(3):315–9. https://doi.org/10.1016/0014-4827(70)90523-9.

    Article  CAS  PubMed  Google Scholar 

  105. Gartler SM. The chromosome number in humans: a brief history. Nat Rev Genet. 2006;7(8):655–60. https://doi.org/10.1038/nrg1917.

    Article  CAS  PubMed  Google Scholar 

  106. Trask BJ. Human cytogenetics: 46 chromosomes, 46 years and counting. Nat Rev Genet. 2002;3(10):769–78. https://doi.org/10.1038/nrg90.

    Article  CAS  PubMed  Google Scholar 

  107. Nowell PC, Hungerford DA. A minute chromosome in human chronic myelocytic leukaemia [abstract] Science.

  108. Winiwarter HV. Cytological observations on the interstitial cells of the human testis. Anat Anz. 1912;41:309–20. https://doi.org/10.1126/science.53.1378.503.

    Article  Google Scholar 

  109. Mrózek K. Acute myeloid leukemia with a complex karyotype. Semin Oncol. 2008;35(4):365–77. https://doi.org/10.1053/j.seminoncol.2008.04.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wong C, Thangavelu M, Hibbard M, Blocker F, Weiss LM, Funari VA. Comparison of diagnostic methodologies to detect chromosomal abnormalities. J Clin Oncol. 2019;37(15):e14617. https://doi.org/10.1200/JCO.2019.37.15_suppl.e14617.

    Article  Google Scholar 

  111. Avramopoulos D, Kennerknecht I, Barbi G, Eckert D, Delabar JM, Maunoury C, Hallberg A, Petersen MB. A case of apparent trisomy 21 without the down’s syndrome phenotype. J Med Genet. 1997;34(7):597–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Thompson PA, O’Brien SM, Wierda WG, Ferrajoli A, Stingo F, Smith SC, Burger JA, Estrov Z, Jain N, Kantarjian HM, Keating MJ. Complex karyotype is a stronger predictor than del(17p) for inferior outcome in relapsed or refractory cll patients treated with ibrutinib-based regimens. Cancer. 2015;121(20):3612–21. https://doi.org/10.1002/cncr.29566.

    Article  CAS  PubMed  Google Scholar 

  113. Badeau M, Lindsay C, Blais J, Nshimyumukiza L, Takwoingi Y, Langlois S, Légaré F, Giguère Y, Turgeon AF, Witteman W, Rousseau F. Genomics-based non-invasive prenatal testing for detection of fetal chromosomal aneuploidy in pregnant women. Cochrane Database Syst Rev. 2017. https://doi.org/10.1002/14651858.CD011767.pub2.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Zhu Y, Shan Q, Zheng J, Cai Q, Yang H, Zhang J, Du X, Jin F. Comparison of efficiencies of non-invasive prenatal testing, karyotyping, and chromosomal micro-array for diagnosing fetal chromosomal anomalies in the second and third trimesters. Front Genet. 2019. https://doi.org/10.3389/fgene.2019.00069.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Chance PF, Abbas N, Lensch MW, Pentao L, Roa BB, Patel PI, Lupski JR. Two autosomal dominant neuropathies result from reciprocal DNA duplication/deletion of a region on chromosome 17. Hum Mol Genet. 1994;3(2):223–8. https://doi.org/10.1093/hmg/3.2.223.

    Article  CAS  PubMed  Google Scholar 

  116. Gonzales PR, Mikhail FM. Diagnostic and Prognostic utility of fluorescence in situ hybridization (FISH) analysis in acute myeloid leukemia. Curr Hematol Malig Rep. 2017;12(6):568–73. https://doi.org/10.1007/s11899-017-0426-6.

    Article  PubMed  Google Scholar 

  117. Gu J, Smith JL, Dowling PK. Fluorescence In Situ Hybridization Probe Validation for Clinical Use. In: Wan TSK, editor. Methods in Molecular Biology. Clifton: Springer; 2017. p. 101–18. https://doi.org/10.1007/978-1-4939-6703-2_10.

    Chapter  Google Scholar 

  118. Lim AST, Lim TH. Fluorescence In Situ Hybridization on Tissue Sections. In: Wan TSK, editor. Methods in Molecular Biology. Clifton: Springer; 2017. p. 119–25. https://doi.org/10.1007/978-1-4939-6703-2_11.

    Chapter  Google Scholar 

  119. Savic S, Bubendorf L. Common fluorescence in situ hybridization applications in cytology. Arch Pathol Lab Med. 2016;140(12):1323–30. https://doi.org/10.5858/arpa.2016-0202-RA.

    Article  PubMed  Google Scholar 

  120. Rowley JD. Chromosome translocations: dangerous liaisons revisited. Nat Rev Cancer. 2001;1(3):245–50. https://doi.org/10.1038/35106108.

    Article  CAS  PubMed  Google Scholar 

  121. Molica M, Massaro F, Breccia M. Diagnostic and prognostic cytogenetics of chronic myeloid leukaemia: an update. Expert Rev Mol Diagn. 2017;17(11):1001–8. https://doi.org/10.1080/14737159.2017.1383156.

    Article  CAS  PubMed  Google Scholar 

  122. Abou Alaiwi WA, Rodriguezguli ISM. Spectral karyotyping to study chromosome abnormalities in humans and mice with polycystic kidney disease. J Vis Exp JoVE. 2012. https://doi.org/10.3791/3887.

    Article  PubMed  Google Scholar 

  123. Anguiano A, Wang BT, Wang SR, Boyar FZ, Mahon LW, El Naggar MM, Kohn PH, Haddadin MH, Sulcova V, Sbeiti AH, Ayad MS, White BJ, Strom CM. Spectral karyotyping for identification of constitutional chromosomal abnormalities at a national reference laboratory. Mol Cytogenet. 2012;5:3. https://doi.org/10.1186/1755-8166-5-3.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Guo B, Han X, Wu Z, Da W, Zhu H. Spectral karyotyping: an unique technique for the detection of complex genomic rearrangements in leukemia. Transl Pediatr. 2014;3(2):135–9. https://doi.org/10.3978/j.issn.2224-4336.2014.01.0.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Imataka G, Arisaka O. Chromosome analysis using spectral karyotyping (SKY). Cell Biochem Biophys. 2012;62(1):13–7. https://doi.org/10.1007/s12013-011-9285-2.

    Article  CAS  PubMed  Google Scholar 

  126. Liehr T, Othman MAK, Rittscher K. Multicolor Karyotyping and Fluorescence In Situ Hybridization-Banding. In: Wan TSK, editor. Methods in Molecular Biology. Clifton: Springer; 2017. p. 181–7.

    Google Scholar 

  127. Kiossoglou KA, Rosenbaum EH, Mitus WJ, Dameshek W, Sheehan C. Multiple chromosomal aberrations in a patient with acute granulocytic leukemia associated with down’s syndrome and twinning: study of a family with a possible tendency to nondisjunction. Blood. 1964;24(2):134–59. https://doi.org/10.1182/blood.V24.2.134.134.

    Article  CAS  PubMed  Google Scholar 

  128. Miller DT, Adam MP, Aradhya S, Biesecker LG, Brothman AR, Carter NP, Church DM, Crolla JA, Eichler EE, Epstein CJ, Faucett WA, Ledbetter DH. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet. 2010;86(5):749–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Bi W, Borgan C, Pursley AN, Hixson P, Shaw CA, Bacino CA, Lalani SR, Patel A, Stankiewicz P, Lupski JR, Beaudet AL, Cheung SW. Comparison of chromosome analysis and chromosomal microarray analysis: what is the value of chromosome analysis in today’s genomic array era? Genet Med. 2013;15(6):450–7.

    Article  PubMed  Google Scholar 

  130. Grüning BA, Fallmann J, Yusuf D, Will S, Erxleben A, Eggenhofer F, Houwaart T, Batut B, Videm P, Bagnacani A, Wolfien M, Lott SC, Hoogstrate Y, Hess WR, Wolkenhauer O, Hoffmann S, Akalin A, Ohler U, Stadler PF, Backofen R. The RNA workbench: best practices for RNA and high-throughput sequencing bioinformatics in Galaxy. Nucleic Acids Res. 2017;45:W560–6. https://doi.org/10.1093/nar/gkx409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Mukherjee S, Ma Z, Wheeler S, Sathanoori M, Coldren C, Prescott JL, Kozyr N, Bouzyk M, Correll M, Ho H. Chromosomal microarray provides enhanced targetable gene aberration detection when paired with next generation sequencing panel in profiling lung and colorectal tumors. Cancer Genet. 2016;209(4):119–29.

    Article  CAS  PubMed  Google Scholar 

  132. Belkadi A, Bolze A, Itan Y, Cobat A, Vincent QB, Antipenko A, Shang L, Boisson B, Casanova JL, Abel L. Whole-genome sequencing is more powerful than whole-exome sequencing for detecting exome variants. Proc Natl Acad Sci U S A. 2015;112(17):5473–8. https://doi.org/10.1073/pnas.1418631112 (Epub 2015 Mar 31. PMID: 25827230; PMCID: PMC4418901.).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Liu ZK, Shang YK, Chen ZN, Bian H. A three-caller pipeline for variant analysis of cancer whole-exome sequencing data. Mol Med Rep. 2017;15(5):2489–94. https://doi.org/10.3892/mmr.2017.6336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Glessner JT, Bick AG, Ito K, et al. Increased frequency of de novo copy number variants in congenital heart disease by integrative analysis of single nucleotide polymorphism array and exome sequence data. Circ Res. 2014;115(10):884–96. https://doi.org/10.1161/CIRCRESAHA.115.304458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Deng W, Murugan S, Lindberg J, et al. Fusion gene detection using whole-exome sequencing data in cancer patients. Front Genet. 2022;13:820493. https://doi.org/10.3389/fgene.2022.820493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Li Q, Zhu X, Wang C, Meng J, Chen D, Kong X. Identification of a rare case with nagashima-type palmoplantar keratoderma and 18q deletion syndrome via exome sequencing and low-coverage whole-genome sequencing. Front Genet. 2021;20(12): 707411. https://doi.org/10.3389/fgene.2021.707411 (PMID: 34616427;PMCID: PMC8488357).

    Article  CAS  Google Scholar 

  137. Li Q, Chen Z, Xiong H, Li R, Yu C, Meng J, Shi P, Kong X. Novel partial exon 51 deletion in the duchenne muscular dystrophy gene identified via whole exome sequencing and long-read whole-genome sequencing. Front Genet. 2021;26(12):762987. https://doi.org/10.3389/fgene.2021.762987 (PMID: 34899847;PMCID: PMC8662377).

    Article  CAS  Google Scholar 

  138. Dong X, Liu B, Yang L, Wang H, Wu B, Liu R, Chen H, Chen X, Yu S, Chen B, Wang S, Xu X, Zhou W, Lu Y. Clinical exome sequencing as the first-tier test for diagnosing developmental disorders covering both CNV and SNV: a Chinese cohort. J Med Genet. 2020;57(8):558–66. https://doi.org/10.1136/jmedgenet-2019-106377 (Epub 2020 Jan 31. PMID: 32005694; PMCID: PMC7418612.).

    Article  CAS  PubMed  Google Scholar 

  139. Lupski JR, Liu P, Stankiewicz P, Carvalho CMB, Posey JE. Clinical genomics and contextualizing genome variation in the diagnostic laboratory. Expert Rev Mol Diagn. 2020;20(10):995–1002. https://doi.org/10.1080/14737159.2020.1826312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Hu L, Liang F, Cheng D, Zhang Z, Yu G, Zha J, Wang Y, Xia Q, Yuan D, Tan Y, Wang D, Liang Y, Lin G. Location of balanced chromosome-translocation breakpoints by long-read sequencing on the oxford nanopore platform. Front Genet. 2020;14(10):1313. https://doi.org/10.3389/fgene.2019.01313 (PMID: 32010185;PMCID: PMC6972507).

    Article  CAS  Google Scholar 

  141. Dong Z, Zhang J, Hu P, Chen H, Xu J, Tian Q, Meng L, Ye Y, Wang J, Zhang M, Li Y, Wang H, Yu S, Chen F, Xie J, Jiang H, Wang W, Choy KW, Xu Z. Low-pass whole-genome sequencing in clinical cytogenetics: a validated approach. Genet Med. 2016;18(9):940–8. https://doi.org/10.1038/gim.2015.199 (Epub 2016 Jan 28. Erratum in: Genet Med. 2017 Jan;19(1):129. PMID: 26820068).

    Article  CAS  PubMed  Google Scholar 

  142. Wasik K, Berisa T, Pickrell JK, Li JH, Fraser DJ, King K, Cox C. Comparing low-pass sequencing and genotyping for trait mapping in pharmacogenetics. BMC Genomics. 2021;22(1):197. https://doi.org/10.1186/s12864-021-07508-2 (PMID: 33743587;PMCID: PMC7981957).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Duncavage EJ, Schroeder MC, O’Laughlin M, Wilson R, MacMillan S, Bohannon A, Kruchowski S, Garza J, Du F, Hughes AEO, Robinson J, Hughes E, Heath SE, Baty JD, Neidich J, Christopher MJ, Jacoby MA, Uy GL, Fulton RS, Miller CA, Payton JE, Link DC, Walter MJ, Westervelt P, DiPersio JF, Ley TJ, Spencer DH. Genome sequencing as an alternative to cytogenetic analysis in myeloid cancers. N Engl J Med. 2021;384(10):924–35. https://doi.org/10.1056/NEJMoa2024534 (PMID: 33704937;PMCID: PMC8130455).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Kerbs P, Vosberg S, Krebs S, et al. Fusion gene detection by RNA-sequencing complements diagnostics of acute myeloid leukemia and identifies recurring NRIP1-MIR99AHG rearrangements. Haematologica. 2022;107(1):100–11. https://doi.org/10.3324/haematol.2021.278436.

    Article  CAS  PubMed  Google Scholar 

  145. Stengel A, Shahswar R, Haferlach T, Walter W, Hutter S, Meggendorfer M, Kern W, Haferlach C. Whole transcriptome sequencing detects a large number of novel fusion transcripts in patients with AML and MDS. Blood Adv. 2020;4(21):5393–401. https://doi.org/10.1182/bloodadvances.2020003007 (PMID:33147338;PMCID:PMC7656918).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Shiba N, Yoshida K, Hara Y, Yamato G, Shiraishi Y, Matsuo H, Okuno Y, Chiba K, Tanaka H, Kaburagi T, Takeuchi M, Ohki K, Sanada M, Okubo J, Tomizawa D, Taki T, Shimada A, Sotomatsu M, Horibe K, Taga T, Adachi S, Tawa A, Miyano S, Ogawa S, Hayashi Y. Transcriptome analysis offers a comprehensive illustration of the genetic background of pediatric acute myeloid leukemia. Blood Adv. 2019;3(20):3157–69. https://doi.org/10.1182/bloodadvances.2019000404 (PMID:31648321;PMCID:PMC6849955).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kim JC, Zuzarte PC, Murphy T, Chan-Seng-Yue M, Brown AMK, Krzyzanowski PM, Smith AC, Notta F, Minden MD, McPherson JD. Cryptic genomic lesions in adverse-risk acute myeloid leukemia identified by integrated whole genome and transcriptome sequencing. Leukemia. 2020;34(1):306–11. https://doi.org/10.1038/s41375-019-0546-1 (Epub 2019 Aug 21. PMID: 31435024; PMCID: PMC7214252).

    Article  PubMed  Google Scholar 

  148. Docking TR, Parker JDK, Jädersten M, Duns G, Chang L, Jiang J, Pilsworth JA, Swanson LA, Chan SK, Chiu R, Nip KM, Mar S, Mo A, Wang X, Martinez-Høyer S, Stubbins RJ, Mungall KL, Mungall AJ, Moore RA, Jones SJM, Birol İ, Marra MA, Hogge D, Karsan A. A clinical transcriptome approach to patient stratification and therapy selection in acute myeloid leukemia. Nat Commun. 2021;12(1):2474. https://doi.org/10.1038/s41467-021-22625-y (PMID: 33931648;PMCID: PMC8087683).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Bullinger L, Döhner K, Döhner H. Genomics of acute myeloid leukemia diagnosis and pathways. J Clin Oncol. 2017;35(9):934–46. https://doi.org/10.1200/JCO.2016.71.2208.

    Article  CAS  PubMed  Google Scholar 

  150. El Omri H, Taha RY, Elomri A, Kacem N, Elsabah H, Ellahie AY, El Omri A. Acute myeloid leukemia in qatar (2010–2016): clinical, biological, and prognostic factors and treatment outcomes. Front Genet. 2020;11:553. https://doi.org/10.3389/fgene.2020.0055.

    Article  PubMed  PubMed Central  Google Scholar 

  151. O’Brien G, Zyla J, Manola KN, Pagoni MN, Polanska J, Badie C. Identification of two novel mutations in human acute myeloid leukemia cases. Leuk Lymphoma. 2021;62(2):454–61. https://doi.org/10.1080/10428194.2020.1832664.

    Article  CAS  PubMed  Google Scholar 

  152. Marando L, Huntly BJ. Molecular landscape of acute myeloid leukemia: prognostic and therapeutic implications. Curr Oncol Rep. 2020;22:1–9. https://doi.org/10.1007/s11912-020-00918-7.

    Article  Google Scholar 

  153. Lopez A, Patel S, Geyer JT, Racchumi J, Chadburn A, Simonson P, Kluk M. Comparison of multiple clinical testing modalities for assessment of NPM1-mutant AML. Fron Oncol. 2021;11:701318.

    Article  CAS  Google Scholar 

  154. Short NJ, Rytting ME, Cortes JE. Acute myeloid leukaemia. Lancet. 2018;392(10147):593–606.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Dinardo CD, Cortes JE. Mutations in AML: prognostic and therapeutic implications. Hematol 2014 Am Soc Hematol Educ Program Book. 2016;2016(1):348–55.

    Google Scholar 

  156. Creutzig U, Zimmermann M, Reinhardt D, Rasche M, von Neuhoff C, Alpermann T, Haferlach C. Changes in cytogenetics and molecular genetics in acute myeloid leukemia from childhood to adult age groups. Cancer. 2016;122(24):3821–30. https://doi.org/10.1002/cncr.30220.

    Article  CAS  PubMed  Google Scholar 

  157. Estey EH. Acute myeloid leukemia: 2019 update on risk-stratification and management. Am J Hematol. 2018;93(10):1267–91. https://doi.org/10.1002/ajh.25214.

    Article  PubMed  Google Scholar 

  158. Gupta M, Mahapatra M, Saxena R. Cytogenetics’ impact on the prognosis of acute myeloid leukemia. J Lab physicians. 2019;11(2):133. https://doi.org/10.4103/jlp.jlp_164_18.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Bienz M, Ludwig M, Leibundgut EO, Mueller BU, Ratschiller D, Solenthaler M, Fey MF, Pabst T. Risk assessment in patients with acute myeloid leukemia and a normal karyotype. Clin Cancer Res. 2005;11:1416–24. https://doi.org/10.1158/1078-0432.CCR-04-1552.

    Article  CAS  PubMed  Google Scholar 

  160. Zaidi SZ, Owaidah T, Al Sharif F, Ahmed SY, Chaudhri N, Aljurf M. The challenge of risk stratification in acute myeloid leukemia with normal karyotype. Hematol Oncol Stem Cell Ther. 2008;1:141–58. https://doi.org/10.1016/s1658-3876(08)50023-9.

    Article  PubMed  Google Scholar 

  161. Fennell KA, Bell CC, Dawson MA. Epigenetic therapies in acute myeloid leukemia: where to from here? Blood. 2019;134:1891–901. https://doi.org/10.1182/blood.2019003262.

    Article  PubMed  Google Scholar 

  162. Gambacorta V, Gnani D, Vago L, Di Micco R. Epigenetic therapies for acute myeloid leukemia and their immune-related effects. Front Cell Dev Biol. 2019. https://doi.org/10.3389/fcell.2019.00207.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Qin Y-Z, Zhu H-H, Jiang Q, Xu L-P, Jiang H, Wang Y, Zhao X-S, Liu Y-R, Zhang X-H, Liu K-Y, Huang X-J. Heterogeneous prognosis among KIT mutation types in adult acute myeloid leukemia patients with t(8;21). Blood Cancer J. 2018;8(8):1–4.

    Article  Google Scholar 

  164. Handschuh L. Not only mutations matter: molecular picture of acute myeloid leukemia emerging from transcriptome studies. Journal of Oncology. 2019;2019(2019):1.

    Article  Google Scholar 

  165. Wolman SR, Gundacker H, Appelbaum FR, Slovak ML, for the Southwest Oncology Group. Impact of trisomy 8 (+8) on clinical presentation, treatment response, and survival in acute myeloid leukemia: a southwest oncology group study. Blood. 2002;100(1):29–35.

    Article  CAS  PubMed  Google Scholar 

  166. Angenendt L, Röllig C, Montesinos P, Martínez-Cuadrón D, Barragan E, García R, Botella C, Martínez P, Ravandi F, Kadia T, Kantarjian HM, Cortes J, Juliusson G, Lazarevic V, Höglund M, Lehmann S, Recher C, Pigneux A, Bertoli S, Schliemann C. Chromosomal abnormalities and prognosis in npm1-mutated acute myeloid leukemia: a pooled analysis of individual patient data from nine international cohorts. J Clin Oncol. 2019;37(29):2632–42. https://doi.org/10.1200/JCO.19.00416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Mansoor A, Mansoor MO, Patel JL, Zhao S, Natkunam Y, Bieker JJ. KLF1/EKLF expression in acute leukemia is correlated with chromosomal abnormalities. Blood Cells Mol Dis. 2020;83:102434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Döhner H, Dolnik A, Tang L, Seymour JF, Minden MD, Stone RM, del Castillo TB, Al-Ali HK, Santini V, Vyas P, Beach CL, MacBeth KJ, Skikne BS, Songer S, Tu N, Bullinger L, Dombret H. Cytogenetics and gene mutations influence survival in older patients with acute myeloid leukemia treated with azacitidine or conventional care. Leukemia. 2018;32(12):2546–57. https://doi.org/10.1038/s41375-018-0257-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Warnstorf D, Bawadi R, Schienke A, Strasser R, Schmidt G, Illig T, Tauscher M, Thol F, Heuser M, Steinemann D, Davenport C, Schlegelberger B, Behrens YL, Göhring G. Unbalanced translocation der (5;17) resulting in a TP53 loss as recurrent aberration in myelodysplastic syndrome and acute myeloid leukemia with complex karyotype. Genes Chromosom Cancer. 2021;60(6):452–7. https://doi.org/10.1002/gcc.22938.

    Article  CAS  PubMed  Google Scholar 

  170. Jeha GM, Wesley T, Cataldo VD. Novel translocation in acute myeloid leukemia: case report and review of risk-stratification and induction chemotherapy in patients with acute myeloid leukemia. J Hematol. 2020;9(1–2):13–7.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Richardson DR, Foster MC, Coombs CC, Zeidner JF. Advances in genomic profiling and risk stratification in acute myeloid leukemia. Semin Oncol Nurs. 2019;35(6): 150957.

    Article  PubMed  PubMed Central  Google Scholar 

  172. El-Khazragy N, Ghozy S, Matbouly S, Zaki W, Safwat G, Hussien G, Khalifa O. Interaction between 12p chromosomal abnormalities and Lnc-HOTAIR mediated pathway in acute myeloid leukemia. J Cell Biochem. 2019;120(9):15288–96. https://doi.org/10.1002/jcb.28796.

    Article  CAS  PubMed  Google Scholar 

  173. Heil G, Krauter J, Raghavachar A, Bergmann L, Hoelzer D, Fiedler W, Lübbert M, Noens L, Schlimok G, Arnold R, Kirchner H, Ganser A. Risk-adapted induction and consolidation therapy in adults with de novo AML aged </= 60 years: Results of a prospective multicenter trial. Ann Hematol. 2004;83(6):336–44. https://doi.org/10.1007/s00277-004-0853-z.

    Article  CAS  PubMed  Google Scholar 

  174. Thol F, Kölking B, Hollink IHI, Damm F, van den Heuvel-Eibrink MM, Michel Zwaan C, Bug G, Ottmann O, Wagner K, Morgan M, Hofmann WK, Göhring G, Schlegelberger B, Krauter J, Ganser A, Heuser M. Analysis of NUP98/NSD1 translocations in adult AML and MDS patients. Leukemia. 2013;27(3):750–4. https://doi.org/10.1038/leu.2012.249.

    Article  CAS  PubMed  Google Scholar 

  175. Micol J-B, Duployez N, Boissel N, Petit A, Geffroy S, Nibourel O, Lacombe C, Lapillonne H, Etancelin P, Figeac M, Renneville A, Castaigne S, Leverger G, Ifrah N, Dombret H, Preudhomme C, Abdel-Wahab O, Jourdan E. Frequent ASXL2 mutations in acute myeloid leukemia patients with t(8;21)/RUNX1-RUNX1T1 chromosomal translocations. Blood. 2014;124(9):1445–9. https://doi.org/10.1182/blood-2014-04-571018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Faber ZJ, Chen X, Gedman AL, Boggs K, Cheng J, Ma J, Radtke I, Chao J-R, Walsh MP, Song G, Andersson AK, Dang J, Dong L, Liu Y, Huether R, Cai Z, Mulder H, Wu G, Edmonson M, Rusch M, Qu C, Li Y, Vadodaria B, Wang J, Hedlund E, Cao X, Yergeau D, Nakitandwe J, Pounds SB, Shurtleff S, Fulton RS, Fulton LL, Easton J, Parganas E, Pui C-H, Rubnitz JE, Ding L, Mardis ER, Wilson RK, Gruber TA, Mullighan CG, Schlenk RF, Paschka P, Döhner K, Döhner H, Bullinger L, Zhang J, Klco JM, Downing JR. The genomic landscape of core-binding factor acute myeloid leukemias. Nat Genet. 2016;48:1551–6. https://doi.org/10.1038/ng.3709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Opatz S, Metzeler KH, Herold T, Vosberg S, Bräundl K, Ksienzyk B, Konstandin NP, Wang C, Graf A, Krebs S, Blum H, Schneider S, Hiddemann W, Spiekermann K, Bohlander SK, Greif PA. The mutatome of CBFB/MYH11-rearranged acute myeloid leukemia (AML). Blood. 2014;124:14. https://doi.org/10.1182/blood.V124.21.14.14.

    Article  Google Scholar 

  178. Greif PA, Yaghmaie M, Konstandin NP, Ksienzyk B, Alimoghaddam K, Ghavamzadeh A, Hauser A, Graf A, Krebs S, Blum H, Bohlander SK. Somatic mutations in acute promyelocytic leukemia (APL) identified by exome sequencing. Leukemia. 2011;25:1519–22. https://doi.org/10.1038/leu.2011.114.

    Article  CAS  PubMed  Google Scholar 

  179. Kim Y, Schulz VP, Satake N, Gruber TA, Teixeira AM, Halene S, Gallagher PG, Krause DS. Whole-exome sequencing identifies a novel somatic mutation in MMP8 associated with a t(1;22)-acute megakaryoblastic leukemia. Leukemia. 2014;28:945–8. https://doi.org/10.1038/leu.2013.314.

    Article  CAS  PubMed  Google Scholar 

  180. Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE, Kandoth C, Payton JE, Baty J, Welch J, Harris CC, Lichti CF, Townsend RR, Fulton RS, Dooling DJ, Koboldt DC, Schmidt H, Zhang Q, Osborne JR, Lin L, O’Laughlin M, McMichael JF, Delehaunty KD, McGrath SD, Fulton LA, Magrini VJ, Vickery TL, Hundal J, Cook LL, Conyers JJ, Swift GW, Reed JP, Alldredge PA, Wylie T, Walker J, Kalicki J, Watson MA, Heath S, Shannon WD, Varghese N, Nagarajan R, Westervelt P, Tomasson MH, Link DC, Graubert TA, DiPersio JF, Mardis ER, Wilson RK. DNMT3A mutations in acute myeloid leukemia. N Engl J Med. 2010;363:2424–33. https://doi.org/10.1056/NEJMoa1005143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Marcucci G, Maharry K, Wu Y-Z, Radmacher MD, Mrózek K, Margeson D, Holland KB, Whitman SP, Becker H, Schwind S, Metzeler KH, Powell BL, Carter TH, Kolitz JE, Wetzler M, Carroll AJ, Baer MR, Caligiuri MA, Larson RA, Bloomfield CD. IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol. 2010;28:2348–55. https://doi.org/10.1200/JCO.2009.27.3730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Grossmann V, Tiacci E, Holmes AB, Kohlmann A, Martelli MP, Kern W, Spanhol-Rosseto A, Klein H-U, Dugas M, Schindela S, Trifonov V, Schnittger S, Haferlach C, Bassan R, Wells VA, Spinelli O, Chan J, Rossi R, Baldoni S, De Carolis L, Goetze K, Serve H, Peceny R, Kreuzer K-A, Oruzio D, Specchia G, Di Raimondo F, Fabbiano F, Sborgia M, Liso A, Farinelli L, Rambaldi A, Pasqualucci L, Rabadan R, Haferlach T, Falini B. Whole-exome sequencing identifies somatic mutations of BCOR in acute myeloid leukemia with normal karyotype. Blood. 2011;118:6153–63. https://doi.org/10.1182/blood-2011-07-365320.

    Article  CAS  PubMed  Google Scholar 

  183. Stratmann S, Yones SA, Mayrhofer M, Norgren N, Skaftason A, Sun J, Smolinska K, Komorowski J, Herlin MK, Sundström C, Eriksson A, Höglund M, Palle J, Abrahamsson J, Jahnukainen K, Munthe-Kaas MC, Zeller B, Tamm KP, Cavelier L, Holmfeldt L. Genomic characterization of relapsed acute myeloid leukemia reveals novel putative therapeutic targets. Blood Adv. 2021;5:900–12. https://doi.org/10.1182/bloodadvances.2020003709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Gomez-Arteaga A, Guzman ML. Minimal residual disease in acute myeloid leukemia. Biol Mech Minim Residual Dis Syst Cancer. 2018;1100:111–25. https://doi.org/10.1007/978-3-319-97746-1_7.

    Article  Google Scholar 

  185. Ghiaur G, Gerber J, Jones RJ. Concise Review: Cancer Stem Cells and Minimal Residual Disease. Stem Cells. 2012;30:89–93.

    Article  CAS  PubMed  Google Scholar 

  186. Short NJ, Zhou S, Fu C, Berry DA, Walter RB, Freeman SD, Hourigan CS, Huang X, Gonzalez GN, Hwang H, Qi X. Association of measurable residual disease with survival outcomes in patients with acute myeloid leukemia: a systematic review and meta-analysis. JAMA Oncol. 2020;6(12):1890–9. https://doi.org/10.1001/jamaoncol.2020.4600.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Selim AG, Moore AS. Molecular minimal residual disease monitoring in acute myeloid leukemia: challenges and future directions. J Mol Diagn. 2018;20(4):389–97. https://doi.org/10.1016/j.jmoldx.2018.03.005.

    Article  PubMed  Google Scholar 

  188. Hourigan CS, Gale RP, Gormley NJ, Ossenkoppele GJ, Walter RB. Measurable residual disease testing in acute myeloid leukaemia. Leukemia. 2017;31(7):1482–90. https://doi.org/10.1038/leu.2017.113.

    Article  CAS  PubMed  Google Scholar 

  189. Andreani G, Cilloni D. Strategies for minimal residual disease detection: current perspectives. Blood lymphat cancer targ ther. 2019;9:1. https://doi.org/10.2147/blctt.s172693.

    Article  CAS  Google Scholar 

  190. Tinnevelt GH, Kokla M, Hilvering B, Van Staveren S, Folcarelli R, Xue L, Bloem AC, Koenderman L, Buydens LM, Jansen JJ. Novel data analysis method for multicolour flow cytometry links variability of multiple markers on single cells to a clinical phenotype. Sci Rep. 2017;7(1):1–11. https://doi.org/10.1038/s41598-017-05714-1.

    Article  CAS  Google Scholar 

  191. Ehinger M, Pettersson L. Measurable residual disease testing for personalized treatment of acute. APMIS. 2019. https://doi.org/10.1111/apm.12926.

    Article  PubMed  Google Scholar 

  192. Ossenkoppele G, Schuurhuis GJ. MRD in AML: does it already guide therapy decision-making? Hematol 2014 Am Soc Hematol Educ Program Book. 2016;131(12):356–65. https://doi.org/10.1182/blood-2017-09-801498.

    Article  CAS  Google Scholar 

  193. Schuurhuis GJ, Heuser M, Freeman S, Béné MC, Buccisano F, Cloos J, Grimwade D, Haferlach T, Hills RK, Hourigan CS, Jorgensen JL. Minimal/measurable residual disease in AML: a consensus document from the European leukemianet MRD working party. Blood. 2018;131(12):1275–91. https://doi.org/10.1182/blood-2017-09-801498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. WHO (2017) Classification of tumours of haematopoietic and lymphoid tissues, WHO Press.

  195. Ravandi F, Walter RB, Freeman SD. Evaluating measurable residual disease in acute myeloid leukemia. Blood Adv. 2018;2(11):1356–66. https://doi.org/10.1182/bloodadvances.2018016378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Ghannam J, Dillon LW, Hourigan CS. Next-generation sequencing for measurable residual disease detection in acute myeloid leukaemia. Br J Haematol. 2020;188(1):77–85.

    Article  PubMed  Google Scholar 

  197. Döhner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Büchner T, Dombret H, Ebert BL, Fenaux P, Larson RA, Levine RL, Lo-Coco F, Naoe T, Niederwieser D, Ossenkoppele GJ, Sanz M, Sierra J, Tallman MS, Tien H-F, Wei AH, Löwenberg B, Bloomfield CD. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424–47. https://doi.org/10.1182/blood-2016-08-733196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Herold T, Rothenberg-Thurley M, Grunwald VV, et al. Validation and refinement of the revised 2017 european leukemianet genetic risk stratification of acute myeloid leukemia. Leukemia. 2020;34:3161–72. https://doi.org/10.1038/s41375-020-0806-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Heuser M, Ofran Y, Boissel N, Mauri SB, Craddock C, Janssen J, Wierzbowska A, Buske C. Acute myeloid leukaemia in adult patients: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2020;31(6):697–712.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors have no further acknowledgements.

Funding

Studies related to this topic were funded and supported by Fundamental Research Grant Scheme (FRGS): FRGS/1/2018/SKK08/USM/02/8 from Ministry of Higher Education (MOHE), Malaysia, and Universiti Sains Malaysia Research Grant, USM–RUI: 1001/CIPPT/8012265.

Author information

Authors and Affiliations

Authors

Contributions

E.J.M., A.A.R, A.A. conceptualized the study; E.J.M., M.Y.Y, Y.R, A.A.R and A.A wrote the original draft. E.J.M., M.Y.Y., A.A. and A.A.R. helped in writing—review and editing; E.J.M., O.H. and N.M.Y supervised the study. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Emmanuel Jairaj Moses.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Consent for publication

All authors have read and consented for submission to this journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosli, A.A., Azlan, A., Rajasegaran, Y. et al. Cytogenetics analysis as the central point of genetic testing in acute myeloid leukemia (AML): a laboratory perspective for clinical applications. Clin Exp Med 23, 1137–1159 (2023). https://doi.org/10.1007/s10238-022-00913-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-022-00913-1

Keywords

Navigation