Skip to main content
Log in

Systemic immune-inflammation index and the survival of hepatocellular carcinoma patients after transarterial chemoembolization: a meta-analysis

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

The systemic immune-inflammation index (SII), derived from neutrophil, platelet, and lymphocyte counts, has been associated with prognosis of patients with cancer. We performed a meta-analysis to evaluate the association between pretreatment SII and survival of patients with hepatocellular carcinoma (HCC) after transarterial chemoembolization (TACE). Cohort studies were identified by search of PubMed, Embase, Web of Science, CNKI, and Wanfang databases. Pooling the results was achieved with a random-effect model that incorporates potential heterogeneity between studies. Nine studies including 3557 patients with HCC contributed to the meta-analysis. Compared to patients with a lower SII, HCC patients with a higher pretreatment SII had poor overall survival (OS, hazard ratio [HR] 1.66, 95% confidence interval [CI] 1.25–2.21, p < 0.001; I2 = 80%) and poor progression-free survival (PFS, HR 1.28, 95% CI 1.05–1.56, p = 0.01; I2 = 0%) after TACE treatment. Further subgroup analyses confirmed a significant association between a high pretreatment SII and poor OS after TACE, which was not significantly affected by study country, sample size, age of the patients, cutoff values for SII, and adjustment of Child–Pugh score or alpha fetoprotein (p for subgroup effect all < 0.05). However, a higher SII was associated with poor OS in studies with follow-up duration ≤ 24 months (HR 1.94, 95% CI 1.39–2.72, p < 0.001), but the association was not statistically significant in studies with follow-up duration > 24 months (HR 1.27, 95% CI: 0.96–1.68, p = 0.09). A higher pretreatment SII was correlated with poor survival of HCC patients after TACE. A preliminary measurement of SII may be valuable for the prediction of the prognosis in HCC patients after TACE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included within the article. The primary data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Xia C, Dong X, Li H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chin Med J (Engl). 2022;135:584–90.

    PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022. CA Cancer J Clin. 2022;72:7–33.

    PubMed  Google Scholar 

  3. Mak LY, Cruz-Ramon V, Chinchilla-Lopez P, et al. Global Epidemiology, Prevention, and Management of Hepatocellular Carcinoma. Am Soc Clin Oncol Educ Book. 2018;38:262–79.

    PubMed  Google Scholar 

  4. Chawla A, Ferrone C. Hepatocellular carcinoma surgical therapy: perspectives on the current limits to resection. Chin Clin Oncol. 2018;7:48.

    PubMed  Google Scholar 

  5. Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet. 2018;391:1301–14.

    PubMed  Google Scholar 

  6. Rizzo A, Nannini M, Novelli M, et al. Dose reduction and discontinuation of standard-dose regorafenib associated with adverse drug events in cancer patients: a systematic review and meta-analysis. Ther Adv Med Oncol. 2020;12:1758835920936932.

    PubMed  PubMed Central  Google Scholar 

  7. Rizzo A, Ricci AD, Gadaleta-Caldarola G, et al. First-line immune checkpoint inhibitor-based combinations in unresectable hepatocellular carcinoma: current management and future challenges. Expert Rev Gastroenterol Hepatol. 2021;15:1245–51.

    CAS  PubMed  Google Scholar 

  8. De Lorenzo S, Tovoli F, Barbera MA, Garuti F, Palloni A, Frega G, Garajovà I, Rizzo A, Trevisani F, Brandi G. Metronomic capecitabine vs. best supportive care in child-pugh B hepatocellular carcinoma: a proof of concept. Scientific Reports. 2018. https://doi.org/10.1038/s41598-018-28337-6.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Raoul JL, Forner A, Bolondi L, et al. Updated use of TACE for hepatocellular carcinoma treatment: how and when to use it based on clinical evidence. Cancer Treat Rev. 2019;72:28–36.

    CAS  PubMed  Google Scholar 

  10. Reig M, Forner A, Rimola J, et al. BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update. J Hepatol. 2022;76:681–93.

    PubMed  Google Scholar 

  11. Xie DY, Ren ZG, Zhou J, et al. 2019 Chinese clinical guidelines for the management of hepatocellular carcinoma: updates and insights. Hepatobiliary Surg Nutr. 2020;9:452–63.

    PubMed  PubMed Central  Google Scholar 

  12. Llovet JM, De Baere T, Kulik L, et al. Locoregional therapies in the era of molecular and immune treatments for hepatocellular carcinoma. Nat Rev Gastroen Hepatol. 2021;18:293–313.

    CAS  Google Scholar 

  13. Chang Young, Jeong Soung Won, Jang Jae Young, Kim Yong Jae. Recent updates of transarterial chemoembolilzation in hepatocellular carcinoma. Int J Mol Sci. 2020;21(21):8165. https://doi.org/10.3390/ijms21218165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sieghart W, Hucke F, Peck-Radosavljevic M. Transarterial chemoembolization: modalities, indication, and patient selection. J Hepatol. 2015;62:1187–95.

    PubMed  Google Scholar 

  15. Bozzato Alessandro Marco, Martingano Paola, Mucelli Roberta Antea Pozzi, Cavallaro Marco Francesco Maria, Cesarotto Matteo, Marcello Cristina, Tiribelli Claudio, Pascut Devis, Pizzolato Riccardo, Mucelli Fabio Pozzi, Giuffrè Mauro, Crocè Lory Saveria, Cova Maria Assunta. MicroRNAs related to tace treatment response: a review of the literature from a radiological point of view. Diagnostics. 2022;12(2):374. https://doi.org/10.3390/diagnostics12020374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Diakos CI, Charles KA, McMillan DC, et al. Cancer-related inflammation and treatment effectiveness. Lancet Oncol. 2014;15:e493-503.

    PubMed  Google Scholar 

  17. Oura Kyoko, Morishita Asahiro, Tani Joji, Masaki Tsutomu. Tumor immune microenvironment and immunosuppressive therapy in hepatocellular carcinoma: a review. Int J Mol Sci. 2021;22(11):5801. https://doi.org/10.3390/ijms22115801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang R, Chang Q, Meng X, et al. Prognostic value of Systemic immune-inflammation index in cancer: A meta-analysis. J Cancer. 2018;9:3295–302.

    PubMed  PubMed Central  Google Scholar 

  19. Marques P, de Vries F, Dekkers OM, et al. Serum Inflammation-based Scores in Endocrine Tumors. J Clin Endocrinol Metab. 2021;106:e3796–819.

    PubMed  PubMed Central  Google Scholar 

  20. Hu B, Yang XR, Xu Y, et al. Systemic immune-inflammation index predicts prognosis of patients after curative resection for hepatocellular carcinoma. Clin Cancer Res. 2014;20:6212–22.

    CAS  PubMed  Google Scholar 

  21. Yang Z, Zhang J, Lu Y, et al. Aspartate aminotransferase-lymphocyte ratio index and systemic immune-inflammation index predict overall survival in HBV-related hepatocellular carcinoma patients after transcatheter arterial chemoembolization. Oncotarget. 2015;6:43090–8.

    PubMed  PubMed Central  Google Scholar 

  22. Cho EJ, Yu SJ, Cho H, et al. Prognostic values of inflammation and immune-based scores in patients with hepatocellular carcinoma who undergo transarterial chemoembolization. Hepatology. 2016;64:661A.

    Google Scholar 

  23. Gu J, Zhang X, Cui R, et al. Prognostic predictors for patients with hepatocellular carcinoma receiving adjuvant transcatheter arterial chemoembolization. Eur J Gastroenterol Hepatol. 2019;31:836–44.

    CAS  PubMed  Google Scholar 

  24. Zhao LY, Yang DD, Ma XK, et al. The Prognostic Value of aspartate aminotransferase to lymphocyte ratio and systemic immune-inflammation index for Overall Survival of Hepatocellular Carcinoma Patients Treated with palliative Treatments. J Cancer. 2019;10:2299–311.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Muller L, Hahn F, Mahringer-Kunz A, et al. Immunonutritive Scoring for Patients with Hepatocellular Carcinoma Undergoing Transarterial Chemoembolization: Evaluation of the CALLY Index. Cancers (Basel) 2021;13.

  26. Yu X, Cheng SH, Cao L, et al. Analysis of the correlation between the preoperative systemic immune inflammatory index and the prognosis in liver cancer patients receiving transarterial chemoembolization. J Intervent Radiol. 2021;30:461–5.

    Google Scholar 

  27. Liu Y, Shi M, Chen S, et al. Intermediate stage hepatocellular carcinoma: Comparison of the value of inflammation-based scores in predicting progression-free survival of patients receiving transarterial chemoembolization. J Cancer Res Ther. 2021;17:740–8.

    CAS  PubMed  Google Scholar 

  28. Lu LH, Wei W, Li SH, et al. The lymphocyte-C-reactive protein ratio as the optimal inflammation-based score in patients with hepatocellular carcinoma underwent TACE. Aging (Albany NY). 2021;13:5358–68.

    CAS  PubMed  Google Scholar 

  29. Young S, Cam I, Gencturk M, et al. Inflammatory scores: comparison and utility in hcc patients undergoing transarterial chemoembolization in a north american cohort. J Hepatocell Carcinoma. 2021;8:1513–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Page MJ, Moher D, Bossuyt PM, et al. PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ. 2021;372: n160.

    PubMed  PubMed Central  Google Scholar 

  31. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372: n71.

    PubMed  PubMed Central  Google Scholar 

  32. Higgins J, Thomas J, Chandler J, et al. Cochrane Handbook for Systematic Reviews of Interventions version 6.2. The Cochrane Collaboration 2021;www.training.cochrane.org/handbook.

  33. Wells GA, Shea B, O'Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. 2010;http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp.

  34. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539–58.

    PubMed  Google Scholar 

  35. Patsopoulos NA, Evangelou E, Ioannidis JP. Sensitivity of between-study heterogeneity in meta-analysis: proposed metrics and empirical evaluation. Int J Epidemiol. 2008;37:1148–57.

    PubMed  PubMed Central  Google Scholar 

  36. Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang Y, Chen B, Wang L, et al. Systemic immune-inflammation index is a promising noninvasive marker to predict survival of lung cancer: A meta-analysis. Medicine (Baltimore). 2019;98: e13788.

    PubMed  Google Scholar 

  38. Zhang Y, Sun Y, Zhang Q. Prognostic value of the systemic immune-inflammation index in patients with breast cancer: a meta-analysis. Cancer Cell Int. 2020;20:224.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Qiu Y, Zhang Z, Chen Y. Prognostic value of pretreatment systemic immune-inflammation index in gastric cancer: a meta-analysis. Front Oncol. 2021;11: 537140.

    PubMed  PubMed Central  Google Scholar 

  40. Dong M, Shi Y, Yang J, et al. Prognostic and clinicopathological significance of systemic immune-inflammation index in colorectal cancer: a meta-analysis. Ther Adv Med Oncol. 2020;12:1758835920937425.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Li Mao, Li Zhenlu, Wang Zihe, Yue Chao, Weiming Hu, Huimin Lu. Prognostic value of systemic immune-inflammation index in patients with pancreatic cancer: a meta-analysis. Clin Experi Med. 2022. https://doi.org/10.1007/s10238-021-00785-x.

    Article  Google Scholar 

  42. Wang B, Huang Y, Lin T. Prognostic impact of elevated pre-treatment systemic immune-inflammation index (SII) in hepatocellular carcinoma: a meta-analysis. Medicine (Baltimore). 2020;99: e18571.

    CAS  PubMed  Google Scholar 

  43. Elinav E, Nowarski R, Thaiss CA, et al. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer. 2013;13:759–71.

    CAS  PubMed  Google Scholar 

  44. Rahat MA, Coffelt SB, Granot Z, et al. Macrophages and neutrophils: regulation of the inflammatory microenvironment in autoimmunity and cancer. Mediators Inflamm. 2016;2016:5894347.

    PubMed  PubMed Central  Google Scholar 

  45. Coffelt SB, Wellenstein MD, de Visser KE. Neutrophils in cancer: neutral no more. Nat Rev Cancer. 2016;16:431–46.

    CAS  PubMed  Google Scholar 

  46. Faria AVS, Andrade SS, Peppelenbosch MP, et al. Platelets in aging and cancer-”double-edged sword”. Cancer Metastasis Rev. 2020;39:1205–21.

    PubMed  PubMed Central  Google Scholar 

  47. Catani MV, Savini I, Tullio V, et al. The “Janus Face” of platelets in cancer. Int J Mol Sci. 2020;21(3):788.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331:1565–70.

    CAS  PubMed  Google Scholar 

  49. St Paul M, Ohashi PS. The Roles of CD8(+) T Cell Subsets in Antitumor Immunity. Trends Cell Biol. 2020;30:695–704.

    CAS  PubMed  Google Scholar 

  50. Wu Y, Tu C, Shao C. The value of preoperative systemic immune-inflammation index in predicting vascular invasion of hepatocellular carcinoma: a meta-analysis. Braz J Med Biol Res. 2021;54: e10273.

    PubMed  PubMed Central  Google Scholar 

  51. Shimada S, Kamiyama T, Orimo T, et al. Long-term prognostic factors of patients with hepatocellular carcinoma who survive over 10 years after hepatectomy. J Surg Oncol. 2020;121:1209–17.

    PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the researchers and study participants for their contributions.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

DL and XZ conceived the study. DL and XP performed literature search, data extraction, and quality evaluation. DL, XZ, KW, and DS performed statistical analyses and interpreted the data. DL and XZ drafted the manuscript. All authors revised the manuscript and approved the submission.

Corresponding author

Correspondence to Duqiang Li.

Ethics declarations

Conflicts of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Consent for publication

This manuscript does not contain any individual person’s data in any form [including any individual details, images, or videos). So the “Consent of for publications” is not appropriate for our manuscript.

Ethics approval

This manuscript does not report studies involving human participants, human data, or human tissue. So the “ethics approval and consent to participate” is not appropriate for our manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Zhao, X., Pi, X. et al. Systemic immune-inflammation index and the survival of hepatocellular carcinoma patients after transarterial chemoembolization: a meta-analysis. Clin Exp Med 23, 2105–2114 (2023). https://doi.org/10.1007/s10238-022-00889-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-022-00889-y

Keywords

Navigation