Skip to main content

Advertisement

Log in

Imbalance in systemic inflammation and immune response following transarterial chemoembolization potentially increases metastatic risk in huge hepatocellular carcinoma

  • Research Article
  • Published:
Tumor Biology

Abstract

Inflammation plays a critical role in tumor metastasis. However, few inflammation-related biomarkers are currently available to predict the risk of metastasis for advanced hepatocellular carcinoma (HCC). Using huge tumors (diameter >10 cm) as a model, we evaluated the potential risk of pre- and post-treatment inflammatory responses in the development of metastasis of HCC patients undergoing transarterial chemoembolization (TACE). A logistic regression model was used to analyze the risk factors. One hundred and sixty-five patients with huge HCC were enrolled in the study. Metastases were identified in 25.5 % (42/165) patients by imaging evaluation post-TACE. Neutrophils increased, whereas lymphocytes decreased significantly post-TACE. Univariate analysis showed that high post-treatment neutrophil-to-lymphocyte ratio (NLR; p = 0.003), low post-treatment lymphocyte count (p = 0.047), and high baseline NLR (p = 0.100) were potential risk factors for metastasis. Further, multivariate analysis showed that high post-treatment NLR, but not pre-treatment NLR, was an independent risk factor for metastasis; this was confirmed by receiver operating characteristic curve analysis. Post-treatment NLR, however, had no correlation to tumor response and overall survival of patients. In conclusion, post-treatment NLR but not pre-treatment NLR independently increases the risk of metastasis in huge HCC. Our findings suggest the potential contribution of treatment-related inflammation to metastasis in advanced HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  PubMed  Google Scholar 

  2. Lencioni R. Chemoembolization in patients with hepatocellular carcinoma. Liver Cancer. 2012;1:41–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang Z, Wu XL, Zeng WZ, Xu GS, Xu H, Weng M, et al. Meta-analysis of the efficacy of sorafenib for hepatocellular carcinoma. Asian Pac J Cancer Prev. 2013;14:691–4.

    Article  PubMed  Google Scholar 

  4. Elinav E, Nowarski R, Thaiss CA, Hu B, Jin C, Flavell RA. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer. 2013;13:759–71.

    Article  CAS  PubMed  Google Scholar 

  5. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454:436–44.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang W, Sun HC, Wang WQ, Zhang QB, Zhuang PY, Xiong YQ, et al. Sorafenib down-regulates expression of HTATIP2 to promote invasiveness and metastasis of orthotopic hepatocellular carcinoma tumors in mice. Gastroenterology. 2012;143:1641–9.

    Article  CAS  PubMed  Google Scholar 

  7. Zhu XD, Sun HC, Xu HX, Kong LQ, Chai ZT, Lu L, et al. Antiangiogenic therapy promoted metastasis of hepatocellular carcinoma by suppressing host-derived interleukin-12b in mouse models. Angiogenesis. 2013;16:809–20.

    Article  CAS  PubMed  Google Scholar 

  8. Wang Y, Zheng C, Liang B, Zhao H, Qian J, Liang H, et al. Hepatocellular necrosis, apoptosis, and proliferation after transcatheter arterial embolization or chemoembolization in a standardized rabbit model. J Vasc Interv Radiol. 2011;22:1606–12.

    Article  PubMed  Google Scholar 

  9. Mannelli L, Kim S, Hajdu CH, Babb JS, Clark TW, Taouli B. Assessment of tumor necrosis of hepatocellular carcinoma after chemoembolization: diffusion-weighted and contrast-enhanced MRI with histopathologic correlation of the explanted liver. AJR Am J Roentgenol. 2009;193:1044–52.

    Article  PubMed  Google Scholar 

  10. Templeton AJ, McNamara MG, Seruga B, Vera-Badillo FE, Aneja P, Ocana A, et al. Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: a systematic review and meta-analysis. J Natl Cancer Inst. 2014;106:dju124.

    Article  PubMed  Google Scholar 

  11. Xue TC, Zhang L, Xie XY, Ge NL, Li LX, Zhang BH, et al. Prognostic significance of the neutrophil-to-lymphocyte ratio in primary liver cancer: a meta-analysis. PLoS One. 2014;9:e96072.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bruix J, Sherman M. Management of hepatocellular carcinoma. Hepatology. 2005;42:1208–36.

    Article  PubMed  Google Scholar 

  13. Bruix J, Sherman M. Management of hepatocellular carcinoma: an update. Hepatology. 2011;53:1020–2.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lencioni R. New data supporting modified RECIST (mRECIST) for hepatocellular carcinoma. Clin Cancer Res. 2013;19:1312–4.

    Article  PubMed  Google Scholar 

  15. Tang ZY, Ye SL, Liu YK, Qin LX, Sun HC, Ye QH, et al. A decade’s studies on metastasis of hepatocellular carcinoma. J Cancer Res Clin Oncol. 2004;130:187–96.

    Article  PubMed  Google Scholar 

  16. Zhang QB, Sun HC, Zhang KZ, Jia QA, Bu Y, Wang M, et al. Suppression of natural killer cells by sorafenib contributes to prometastatic effects in hepatocellular carcinoma. PLoS One. 2013;8:e55945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bonfil RD, Bustuoabad OD, Ruggiero RA, Meiss RP, Pasqualini CD. Tumor necrosis can facilitate the appearance of metastases. Clin Exp Metastasis. 1988;6:121–9.

    Article  CAS  PubMed  Google Scholar 

  18. Liou TC, Shih SC, Kao CR, Chou SY, Lin SC, Wang HY. Pulmonary metastasis of hepatocellular carcinoma associated with transarterial chemoembolization. J Hepatol. 1995;23:563–8.

    Article  CAS  PubMed  Google Scholar 

  19. Ohnishi S, Ma N, Thanan R, Pinlaor S, Hammam O, Murata M, et al. DNA damage in inflammation-related carcinogenesis and cancer stem cells. Oxidative Med Cell Longev. 2013;2013:387014.

    Article  Google Scholar 

  20. Freire J, Ajona D, de Biurrun G, Agorreta J, Segura V, Guruceaga E, et al. Silica-induced chronic inflammation promotes lung carcinogenesis in the context of an immunosuppressive microenvironment. Neoplasia. 2013;15:913–24.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fehlker M, Huska MR, Jons T, Andrade-Navarro MA, Kemmner W. Concerted down-regulation of immune-system related genes predicts metastasis in colorectal carcinoma. BMC Cancer. 2014;14:64.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Qin LX. Inflammatory immune responses in tumor microenvironment and metastasis of hepatocellular carcinoma. Cancer Microenviron. 2012;5:203–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brudvik KW, Henjum K, Aandahl EM, Bjornbeth BA, Tasken K. Regulatory t-cell-mediated inhibition of antitumor immune responses is associated with clinical outcome in patients with liver metastasis from colorectal cancer. Cancer Immunol Immunother. 2012;61:1045–53.

    Article  CAS  PubMed  Google Scholar 

  24. Llovet JM, Paradis V, Kudo M, Zucman-Rossi J. Tissue biomarkers as predictors of outcome and selection of transplant candidates with hepatocellular carcinoma. Liver Transpl. 2011;17 Suppl 2:S67–71.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Utsunomiya T, Shimada M, Imura S, Morine Y, Ikemoto T, Mori M. Molecular signatures of noncancerous liver tissue can predict the risk for late recurrence of hepatocellular carcinoma. J Gastroenterol. 2010;45:146–52.

    Article  CAS  PubMed  Google Scholar 

  26. de Souza CM, de Carvalho LF, da Silva Vieira T, Candida Araujo ESA, Paz Lopes MT, Alves Neves Diniz Ferreira M, et al. Thalidomide attenuates mammary cancer associated-inflammation, angiogenesis and tumor growth in mice. Biomed Pharmacother. 2012;66:491–8.

    Article  Google Scholar 

  27. Hossain MA, Kim DH, Jang JY, Kang YJ, Yoon JH, Moon JO, et al. Aspirin induces apoptosis in vitro and inhibits tumor growth of human hepatocellular carcinoma cells in a nude mouse xenograft model. Int J Oncol. 2012;40:1298–304.

    CAS  PubMed  Google Scholar 

  28. Sahasrabuddhe VV, Gunja MZ, Graubard BI, Trabert B, Schwartz LM, Park Y, et al. Nonsteroidal anti-inflammatory drug use, chronic liver disease, and hepatocellular carcinoma. J Natl Cancer Inst. 2012;104:1808–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shen B, Chu ES, Zhao G, Man K, Wu CW, Cheng JT, et al. PPARgamma inhibits hepatocellular carcinoma metastases in vitro and in mice. Br J Cancer. 2012;106:1486–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Maes H, Kuchnio A, Peric A, Moens S, Nys K, De Bock K, et al. Tumor vessel normalization by chloroquine independent of autophagy. Cancer Cell. 2014;26:190–206.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the State Key Project on Infectious Diseases of China (No. 2012ZX10002-016) and the Shanghai Natural Science Foundation (No. 15ZR1407100).

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-Long Ye.

Additional information

Tong-Chun Xue and Qing-An Jia contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, TC., Jia, QA., Ge, NL. et al. Imbalance in systemic inflammation and immune response following transarterial chemoembolization potentially increases metastatic risk in huge hepatocellular carcinoma. Tumor Biol. 36, 8797–8803 (2015). https://doi.org/10.1007/s13277-015-3632-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3632-7

Keywords

Navigation