Skip to main content
Log in

Evaluation of Apelin/APJ system expression in hepatocellular carcinoma as a function of clinical severity

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Apelin, a peptide of 77 amino acids, and its endogenous ligand, angiotensin-like-receptor 1 (APJ), play a key role in the development of tumors by enhancing angiogenesis, metastasis, cell proliferation, development of cancer stem cells and drug resistance and inhibiting apoptosis of cancer cells. However, little is known about Apelin/APJ system involvement in hepatocellular carcinoma (HCC). The aim of this study was to evaluate Apelin and APJ expression in liver specimens, obtained from subjects with HCV-positive HCC who underwent liver transplantation, according to liver disease severity (liver recipients, LR, n = 14, age 59.4 ± 1.8) and in donors (liver donors, LD, n = 14, age 62.1 ± 17.3). Apelin/APJ axis, apoptotic and inflammatory markers were evaluated by Real-Time PCR analysis. The Apelin/APJ system expression resulted significantly higher in LR in comparison with LD (p < 0.05), in particular in those with more severe liver disease. The apoptotic (Bcl-2, BAX, NOTCH-1, Casp-3) and inflammatory (IL-6, TNF-α) markers were increased as a function of disease severity (p < 0.05). Multiple significant positive correlations were found between Apelin/APJ axis and the other markers. Although further investigations are needed to better understand the role of Apelin/APJ axis in HCC, our result indicated a potential role of this axis in its development and progression as well as in recognizing novel therapeutic targets opening a new avenue for treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–404.

    PubMed  Google Scholar 

  2. Gomaa AI, Khan SA, Toledano MB, Waked I, Taylor-Robinson SD. Hepatocellular carcinoma: epidemiology, risk factors and pathogenesis. World J Gastroenterol. 2008;14:4300–8.

    PubMed  PubMed Central  Google Scholar 

  3. Zhu AX, Duda DG, Sahani DV, Jain RK. HCC and angiogenesis: possible targets and future directions. Nat Rev Clin Oncol. 2011;8:292–301.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Muto J, Shirabe K, Sugimachi K, Maehara Y. Review of angiogenesis in hepatocellular carcinoma. Hepatolo Res Off J Japan Soc Hepato. 2015;45:1–9.

    Google Scholar 

  5. Matsui O, Kobayashi S, Sanada J, et al. Hepatocelluar nodules in liver cirrhosis: hemodynamic evaluation (angiography-assisted CT) with special reference to multi-step hepatocarcinogenesis. Abdom Imaging. 2011;36:264–72.

    PubMed  PubMed Central  Google Scholar 

  6. Hanish SI, Knechtle SJ. Liver transplantation for the treatment of hepatocellular carcinoma. Oncology. 2011;25(8):25752.

    Google Scholar 

  7. Bhardwaj N, Perera MT, Silva MA. Current treatment approachesto HCC with a special consideration to transplantation. J Transpl. 2016;2016:7926264.

    CAS  Google Scholar 

  8. Toniutto P, Zanetto A, Ferrarese A, Burra P. Current challenges and future directions for liver transplantation. Liver Int. 2017;37:317–27.

    PubMed  Google Scholar 

  9. Freeman RB, Edwards EB, Harper AM. Waiting list removal rates among patients with chronic and malignant liver diseases. Am J Transpl. 2006;6:1416–21.

    CAS  Google Scholar 

  10. Wiesner RH, Edwards E, Freeman R, et al. Model for end-stage liver disease (MELD) and allocation of donor livers. Gastroenterology. 2003;124:91–6.

    PubMed  Google Scholar 

  11. Wiesner RH, McDiarmid SV, Kamath PS, et al. MELD and PELD: application of survival models to liver allocation. Liver Transpl. 2001;7:567–80.

    CAS  PubMed  Google Scholar 

  12. Huo TI, Huang YH, Su CW, et al. Validation of the HCC-MELD for dropout probability in patients with small hepatocellular carcinoma undergoing locoregional therapy. Clin Transpl. 2008;22:469–75.

    Google Scholar 

  13. Huynh H, Ong RW, Li PY, et al. Targeting receptor tyrosine kinase pathways in hepatocellular carcinoma. Anticancer Agents Med Chem. 2011;11:560–75.

    CAS  PubMed  Google Scholar 

  14. Zhou Q, Lui VW, Yeo W. Targeting the PI3K/Akt/mTOR pathway in hepatocellular carcinoma. Future Oncol. 2011;7:1149–67.

    CAS  PubMed  Google Scholar 

  15. Cavard C, Colnot S, Audard V, et al. Wnt/beta-catenin pathway in hepatocellular carcinoma pathogenesis and liver physiology. Future Oncol. 2008;4:647–60.

    CAS  PubMed  Google Scholar 

  16. Chen YJ, Wu H, Shen XZ. The ubiquitin-proteasome system and its potential application in hepatocellular carcinoma therapy. Cancer Lett. 2016;379:245–52.

    CAS  PubMed  Google Scholar 

  17. Morse MA, Sun W, Kim R, et al. The role of angiogenesis in hepatocellular carcinoma. Clin Cancer Res. 2019;25:912–20.

    CAS  PubMed  Google Scholar 

  18. Zhu AX. Systemic treatment of hepatocellular carcinoma: dawn of a new era? Ann Surg Oncol. 2010;17:1247–56.

    PubMed  Google Scholar 

  19. Eyries M, Siegfried G, Ciumas M, et al. Hypoxia-induced Apelin expression regulates endothelial cell proliferation and regenerative angiogenesis. Circ Res. 2008;103:432–40.

    CAS  PubMed  Google Scholar 

  20. Kidoya H, Ueno M, Yamada Y, et al. Spatial and temporal role of the Apelin/APJ system in the caliber size regulation of blood vessels during angiogenesis. EMBO J. 2008;27:522–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Berta J, Kenessey I, Dobos J, et al. Apelin expression in human non-small cell lung cancer: role in angiogenesis and prognosis. J Thorac Oncol. 2010;5:1120–9.

    PubMed  Google Scholar 

  22. Heo K, Kim YH, Sung HJ, et al. Hypoxia-induced up-regulation of Apelin is associated with a poor prognosis in oral squamous cell carcinoma patients. Oral Oncol. 2012;48:500–6.

    CAS  PubMed  Google Scholar 

  23. Wang Z, Greeley GH Jr, Qiu S. Immunohistochemical localization of Apelin in human normal breast and breast carcinoma. J Mol Histol. 2008;39:121–4.

    CAS  PubMed  Google Scholar 

  24. Muto J, Shirabe K, Yoshizumi T, et al. The Apelin-APJ system induces tumor arteriogenesis in hepatocellular carcinoma. Anticancer Res. 2014;34:5313–20.

    PubMed  Google Scholar 

  25. Hashimoto T, Kihara M, Ishida J, et al. Apelin stimulates myosin light chain phosphorylation in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2006;26:1267–72.

    CAS  PubMed  Google Scholar 

  26. Masoumi J, Jafarzadeh A, Khorramdelazad H, Abbasloui M, Abdolalizadeh J, Jamali N. Role of Apelin/APJ axis in cancer development and progression. Adv Med Sci. 2020;65:202–13.

    PubMed  Google Scholar 

  27. Cui RR, Mao DA, Yi L, et al. Apelin suppresses apoptosis of human vascular smooth muscle cells via APJ/PI3-K/Akt signaling pathways. Amino Acids. 2010;39:1193–200.

    CAS  PubMed  Google Scholar 

  28. Cabiati M, Gaggini M, Cesare MM, et al. Osteopontin in hepatocellular carcinoma: a possible biomarker for diagnosis and follow-up. Cytokine. 2017;99:59–65.

    CAS  PubMed  Google Scholar 

  29. Cabiati M, Gaggini M, De Simone P, et al. Assessment of RANKL/RANK/osteoprotegerin system expression in patients with hepatocellular carcinoma. Minerva Endocrinologica. “Letter to the Editor” 2020 in press.

  30. Bustin SA, Benes V, Garson JA, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55:611–22.

    CAS  PubMed  Google Scholar 

  31. Farid RM, Abu-Zeid RM, El-Tawil A. Emerging role of adipokine apelin in hepatic remodelling and initiation of carcinogensis in chronic hepatitis C patients. Int J Clin Exp Pathol. 2014;7:2707.

    PubMed  PubMed Central  Google Scholar 

  32. Lacquaniti A, Altavilla G, Picone A, et al. Apelin beyond kidney failure and hyponatremia: a useful biomarker for cancer disease progression evaluation. Clin Exp Med. 2015;15:97–105.

    CAS  PubMed  Google Scholar 

  33. Wang C, Wen J, Zhou Y, et al. Apelin induces vascular smooth muscle cells migration via a PI3K/Akt/FoxO3a/MMP-2 pathway. Int J Biochem Cell Biol. 2015;69:173–82.

    CAS  PubMed  Google Scholar 

  34. Liu QF, Yu HW, You L, Liu M-X, Li K-Y, Tao G-Z. Apelin-13-induced proliferation and migration induced of rat vascular smooth muscle cells is mediated by the upregulation of Egr-1. Biochem Biophys Res Commun. 2013;439:235–40.

    CAS  PubMed  Google Scholar 

  35. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35:495–516.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Karimabad MN, Mahmoodi M, Jafarzadeh A, et al. The novel Indole-3-formaldehyde (2-AITFEI-3-F) is involved in processes of apoptosis induction? Life Sci. 2017;181:31–44.

    CAS  PubMed  Google Scholar 

  37. Engel T, Henshall DC. Apoptosis, Bcl-2 family proteins and caspases: the ABCs of seizure-damage and epileptogenesis? Int J Physiol Pathophysiol Pharmacol. 2009;1:97.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kelly PN, Strasser A. The role of Bcl-2 and its pro-survival relatives in tumourigenesis and cancer therapy. Cell Death Differ. 2011;18:1414.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Mackey TJ, Borkowski A, Amin P, Jacobs SC, Kyprianou N. bcl-2/BAX ratio as a predictive marker for therapeutic response to radiotherapy in patients with prostate cancer. Urology. 1998;52:1085–90.

    CAS  PubMed  Google Scholar 

  40. Raffo AJ, Perlman H, Chen MW, Day ML, Streitman JS, Buttyan R. Overexpression of bcl-2 protects prostate cancer cells from apoptosis in vitro and confers resistance to androgen depletion in vivo. Cancer Res. 1995;55:4438–45.

    CAS  PubMed  Google Scholar 

  41. Cao C, Wang C. Clinical significance of serum miR-768–3p in HBV-related hepatocellular carcinoma and its potential mechanism. Clin Exp Med. 2020. https://doi.org/10.1007/s10238-020-00646-z.

    Article  PubMed  Google Scholar 

  42. Qu L, Cai X, Xu J, et al. Six long noncoding RNAs as potentially biomarkers involved in competitive endogenous RNA of hepatocellular carcinoma. Clin Exp Med. 2020;20(3):437–47.

    CAS  PubMed  Google Scholar 

  43. Feder S, Haberl EM, Spirk M, Weiss TS, Wiest R, Buechler C. Pentraxin-3 is not related to disease severity in cirrhosis and hepatocellular carcinoma patients. Clin Exp Med. 2020;20(2):289–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Wu L, Chen P, Ying J, et al. MAT2B mediates invasion and metastasis by regulating EGFR signaling pathway in hepatocellular carcinoma. Clin Exp Med. 2019;19(4):535–46.

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by “INTEROMICS FLAGSHIP PROJECT” (Metabolomics identification of prognostic and diagnostic biomarkers of hepatocellular carcinoma), supported by the MIUR (Italian Ministry of Education, University and Research) and coordinated by the CNR (National Research Council, Principal Investigator: Dr. Amalia Gastaldelli).

Author information

Authors and Affiliations

Authors

Contributions

SDR contributed to conceptualization, data curation and formal analysis. SDR, MC and MG helped with methodology. PDS contributed to patient enrolment. SDR writes the original draft. MC and MG contributed to writing—review & editing.

Corresponding author

Correspondence to Silvia Del Ry.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Consent to participate

All patients enrolled gave their consent to be included in the study.

Consent for publication

All authors gave their consent for this paper publication.

Ethical approval

The study was carried out in compliance with the principles set forth in the 2008 Seoul revision of the Declaration of Helsinki. Approval was obtained from the Institutional Ethics Committee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabiati, M., Gaggini, M., De Simone, P. et al. Evaluation of Apelin/APJ system expression in hepatocellular carcinoma as a function of clinical severity. Clin Exp Med 21, 269–275 (2021). https://doi.org/10.1007/s10238-020-00672-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-020-00672-x

Keywords

Navigation