Skip to main content

Advertisement

Log in

Cancer therapy using tumor-associated antigens to reduce side effects

  • Review Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Tumor-associated antigens recently have become very popular in cancer therapy. They can be targeted to reduce side effects of traditional cancer therapy. In this review, ten promising tumor-associated antigens are being discussed in detail. The characteristics of each one are being reviewed in detail. Monoclonal antibodies attached to traditional anticancer agents can target a specific type of cancer cells thereby reducing the amount of traditional anticancer agents reaching normal tissues. This sort of cancer targeting can be a very attractive anticancer therapy because it substantially reduces the amount of side effects normally caused by traditional anticancer agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Blakey DC (1992) Drug targeting with monoclonal antibodies. A review. Acta Oncol 31:91–97

    PubMed  CAS  Google Scholar 

  2. Smith NL, Finley JL, Wennerberg AE, Semer DA, Kearse KP (1999) Immunohistochemically detecting target antigens in patient biopsies for tailoring monoclonal antibody based cancer therapy. Hum Antibodies 9:61–65

    PubMed  CAS  Google Scholar 

  3. Hamann PR, Hinman LM, Hollander I et al (2002) Gemtuzumab ozogamicin, a potent and selective anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. Bioconjug Chem 13:47–58

    PubMed  CAS  Google Scholar 

  4. Morokoff AP, Novak U (2004) Targeted therapy for malignant gliomas. J Clin Neurosci 11:807–818

    PubMed  Google Scholar 

  5. Elbayoumi TA, Torchilin VP (2008) Tumor-specific antibody-mediated targeted delivery of Doxil reduces the manifestation of auricular erythema side effect in mice. Int J Pharm 357:272–279

    PubMed  CAS  Google Scholar 

  6. Elbayoumi TA, Torchilin VP (2006) Enhanced accumulation of long-circulating liposomes modified with the nucleosome-specific monoclonal antibody 2C5 in various tumours in mice: gamma-imaging studies. Eur J Nucl Med Mol Imaging 33:1196–1205

    PubMed  CAS  Google Scholar 

  7. Lukyanov AN, Elbayoumi TA, Chakilam AR, Torchilin VP (2004) Tumor-targeted liposomes: doxorubicin-loaded long-circulating liposomes modified with anti-cancer antibody. J Control Release 100:135–144

    PubMed  CAS  Google Scholar 

  8. Shiau CS, Chang MY, Chiang CH, Hsieh CC, Hsieh TT (2003) Ovarian endometrioma associated with very high serum CA-125 levels. Chang Gung Med J 26:695–699

    PubMed  Google Scholar 

  9. Kui Wong N, Easton RL, Panico M et al (2003) Characterization of the oligosaccharides associated with the human ovarian tumor marker CA125. J Biol Chem 278:28619–28634

    PubMed  Google Scholar 

  10. Jhang H, Chuang L, Visintainer P, Ramaswamy G (2003) CA 125 levels in the preoperative assessment of advanced-stage uterine cancer. Am J Obstet Gynecol 188:1195–1197

    PubMed  CAS  Google Scholar 

  11. Mylonas I, Makovitzky J, Richter DU, Jeschke U, Briese V, Friese K (2003) Immunohistochemical expression of the tumour marker CA-125 in normal, hyperplastic and malignant endometrial tissue. Anticancer Res 23:1075–1080

    PubMed  CAS  Google Scholar 

  12. Rump A, Morikawa Y, Tanaka M et al (2002) RCAS1 is associated with ductal breast cancer progression. Biochem Biophys Res Commun 293:1544–1549

    Google Scholar 

  13. Mobus VJ, Baum RP, Bolle M et al (2003) Immune responses to murine monoclonal antibody-B43.13 correlate with prolonged survival of women with recurrent ovarian cancer. Am J Obstet Gynecol 189:28–36

    PubMed  CAS  Google Scholar 

  14. Balzar M, Briaire-de Bruijn IH, Rees-Bakker HA et al (2001) Epidermal growth factor-like repeats mediate lateral and reciprocal interactions of Ep-CAM molecules in homophilic adhesions. Mol Cell Biol 21:2570–2580

    PubMed  CAS  Google Scholar 

  15. Di Paolo C, Willuda J, Kubetzko S et al (2003) A recombinant immunotoxin derived from a humanized epithelial cell adhesion molecule-specific single-chain antibody fragment has potent and selective antitumor activity. Clin Cancer Res 9:2837–2848

    PubMed  CAS  Google Scholar 

  16. Gastl G, Spizzo G, Obrist P, Dunser M, Mikuz G (2000) Ep-CAM overexpression in breast cancer as a predictor of survival. Lancet 356:1981–1982

    PubMed  CAS  Google Scholar 

  17. Ullenhag GJ, Frodin JE, Mosolits S et al (2003) Immunization of colorectal carcinoma patients with a recombinant canarypox virus expressing the tumor antigen Ep-CAM/KSA (ALVAC-KSA) and granulocyte macrophage colony-stimulating factor induced a tumor-specific cellular immune response. Clin Cancer Res 9:2447–2456

    PubMed  CAS  Google Scholar 

  18. Kim JH, Herlyn D, Wong KK et al (2003) Identification of epithelial cell adhesion molecule autoantibody in patients with ovarian cancer. Clin Cancer Res 9:4782–4791

    PubMed  CAS  Google Scholar 

  19. Yang JZ, Zhang XH, Wu WX et al (2003) Expression of EP-CAM, beta-catenin in the carcinogenesis of squamous cell carcinoma of uterine cervix. Zhonghua Zhong Liu Za Zhi 25:372–375

    PubMed  CAS  Google Scholar 

  20. Kurzen H, Kaul S, Egner U, Deichmann M, Hartschuh W (2003) Expression of MUC 1 and Ep-CAM in Merkel cell carcinomas: implications for immunotherapy. Arch Dermatol Res 295:146–154

    PubMed  CAS  Google Scholar 

  21. Poczatek RB, Myers RB, Manne U et al (1999) Ep-Cam levels in prostatic adenocarcinoma and prostatic intraepithelial neoplasia. J Urol 162:1462–1466

    PubMed  CAS  Google Scholar 

  22. Winter MJ, Nagtegaal ID, van Krieken JH, Litvinov SV (2003) The epithelial cell adhesion molecule (Ep-CAM) as a morphoregulatory molecule is a tool in surgical pathology. Am J Pathol 163:2139–2148

    PubMed  CAS  Google Scholar 

  23. Wimberger P, Xiang W, Mayr D et al (2003) Efficient tumor cell lysis by autologous, tumor-resident T lymphocytes in primary ovarian cancer samples by an EP-CAM-/CD3-bispecific antibody. Int J Cancer 105:241–248

    PubMed  CAS  Google Scholar 

  24. Trojan A, Tun-Kyi A, Odermatt B, Nestle FO, Stahel RA (2002) Functional detection of epithelial cell adhesion molecule specific cytotoxic T lymphocytes in patients with lung cancer, colorectal cancer and in healthy donors. Lung Cancer 36:151–158

    PubMed  Google Scholar 

  25. Gu Z, Thomas G, Yamashiro J (2000) Prostate stem cell antigen (PSCA) expression increases with high gleason score, advanced stage and bone metastasis in prostate cancer. Oncogene 19:1288–1296

    PubMed  CAS  Google Scholar 

  26. Jalkut MW, Reiter RE (2002) Role of prostate stem cell antigen in prostate cancer research. Curr Opin Urol 12:401–406

    PubMed  Google Scholar 

  27. Ross S, Spencer SD, Lasky LA, Koeppen H (2001) Selective expression of murine prostate stem cell antigen in fetal and adult tissues and the transgenic adenocarcinoma of the mouse prostate model of prostate carcinogenesis. Am J Pathol 158:809–816

    PubMed  CAS  Google Scholar 

  28. Argani P, Rosty C, Reiter RE et al (2001) Discovery of new markers of cancer through serial analysis of gene expression: prostate stem cell antigen is overexpressed in pancreatic adenocarcinoma. Cancer Res 61:4320–4324

    PubMed  CAS  Google Scholar 

  29. Bahrenberg G, Brauers A, Joost HG, Jakse G (2000) Reduced expression of PSCA, a member of the LY-6 family of cell surface antigens, in bladder, esophagus, and stomach tumors. Biochem Biophys Res Commun 275:783–788

    PubMed  CAS  Google Scholar 

  30. Reiter RE, Gu Z, Watabe T et al (1998) Prostate stem cell antigen: a cell surface marker overexpressed in prostate cancer. Proc Natl Acad Sci USA 95:1735–1740

    PubMed  CAS  Google Scholar 

  31. Amara N, Palapattu GS, Schrage M et al (2001) Prostate stem cell antigen is overexpressed in human transitional cell carcinoma. Cancer Res 61:4660–4665

    PubMed  CAS  Google Scholar 

  32. Zhigang Z, Wenlv S (2004) Prostate stem cell antigen (PSCA) expression in human prostate cancer tissues and its potential role in prostate carcinogenesis and progression of prostate cancer. World J Surg Oncol 2:13

    PubMed  Google Scholar 

  33. Dannull J, Diener PA, Prikler L et al (2000) Prostate stem cell antigen is a promising candidate for immunotherapy of advanced prostate cancer. Cancer Res 60:5522–5528

    PubMed  CAS  Google Scholar 

  34. Ross JS, Fletcher JA, Bloom KJ et al (2004) Targeted therapy in breast cancer: the HER-2/neu gene and protein. Mol Cell Proteomics 3:379–398

    PubMed  CAS  Google Scholar 

  35. Kiessling R, Wei WZ, Herrmann F et al (2002) Cellular immunity to the Her-2/neu protooncogene. Adv Cancer Res 85:101–144

    PubMed  CAS  Google Scholar 

  36. Lindencrona JA, Preiss S, Kammertoens T et al (2004) CD4+ T cell-mediated HER-2/neu-specific tumor rejection in the absence of B cells. Int J Cancer 109:259–264

    PubMed  CAS  Google Scholar 

  37. Matsuyama S, Kitajima Y, Sumi K, Mori D, Satoh T, Miyazaki K (2004) Gallbladder cancers rarely overexpress HER-2/neu, demonstrated by Hercep test. Oncol Rep 11:815–819

    PubMed  CAS  Google Scholar 

  38. Nguyen LH, Black MJ, Hier M, Chauvin P, Rochon L (2003) HER2/neu and Ki-67 as prognostic indicators in mucoepidermoid carcinoma of salivary glands. J Otolaryngol 32:328–331

    PubMed  Google Scholar 

  39. Climent MA, Segui MA, Peiro G et al (2001) Prognostic value of HER-2/neu and p53 expression in node-positive breast cancer. HER-2/neu effect on adjuvant tamoxifen treatment. Breast 10:67–77

    PubMed  CAS  Google Scholar 

  40. Gross ME, Shazer RL, Agus DB (2004) Targeting the HER-kinase axis in cancer. Semin Oncol 31:9–20

    PubMed  CAS  Google Scholar 

  41. Mass RD (2004) The HER receptor family: a rich target for therapeutic development. Int J Radiat Oncol Biol Phys 58:932–940

    PubMed  CAS  Google Scholar 

  42. Hartman M, Baruch A, Ron I et al (1999) MUC1 isoform specific monoclonal antibody 6E6/2 detects preferential expression of the novel MUC1/Y protein in breast and ovarian cancer. Int J Cancer 82:256–267

    PubMed  CAS  Google Scholar 

  43. Byrd JC, Bresalier RS (2004) Mucins and mucin binding proteins in colorectal cancer. Cancer Metastasis Rev 23:77–99

    PubMed  CAS  Google Scholar 

  44. Hattrup CL, Fernandez-Rodriguez J, Schroeder JA, Hansson GC, Gendler SJ (2004) MUC1 can interact with adenomatous polyposis coli in breast cancer. Biochem Biophys Res Commun 316:364–369

    PubMed  CAS  Google Scholar 

  45. Denda-Nagai K, Fujita K, Fujime M, Nakatsugawa S, Ishigaki T, Irimura T (2000) Absence of correlation of MUC1 expression to malignant behavior of renal cell carcinoma in experimental systems. Clin Exp Metastasis 18:77–81

    PubMed  CAS  Google Scholar 

  46. Nassar H, Pansare V, Zhang H et al (2004) Pathogenesis of invasive micropapillary carcinoma: role of MUC1 glycoprotein. Mod Pathol 17:1045–1050

    PubMed  CAS  Google Scholar 

  47. Tsutsumida H, Goto M, Kitajima S, Kubota I, Hirotsu Y, Yonezawa S (2004) Combined status of MUC1 mucin and surfactant apoprotein A expression can predict the outcome of patients with small-size lung adenocarcinoma. Histopathology 44:147–155

    PubMed  CAS  Google Scholar 

  48. Levi E, Klimstra DS, Andea A, Basturk O, Adsay NV (2004) MUC1 and MUC2 in pancreatic neoplasia. J Clin Pathol 57:456–462

    PubMed  CAS  Google Scholar 

  49. Baldus SE, Monig SP, Huxel S et al (2004) MUC1 and nuclear beta-catenin are coexpressed at the invasion front of colorectal carcinomas and are both correlated with tumor prognosis. Clin Cancer Res 10:2790–2796

    PubMed  CAS  Google Scholar 

  50. Wajchman HJ, Pierce CW, Varma VA, Issa MM, Petros J, Dombrowski KE (2004) Ex vivo expansion of CD8+CD56+ and CD8+CD56− natural killer T cells specific for MUC1 mucin. Cancer Res 64:1171–1180

    PubMed  CAS  Google Scholar 

  51. Sherman L, Sleeman J, Herrlich P, Ponta H (1994) Hyaluronate receptors: key players in growth, differentiation, migration and tumor progression. Curr Opin Cell Biol 6:726–733

    PubMed  CAS  Google Scholar 

  52. Yamada Y, Itano N, Narimatsu H et al (1999) Receptor for hyaluronan-mediated motility and CD44 expressions in colon cancer assessed by quantitative analysis using real-time reverse transcriptase-polymerase chain reaction. Jpn J Cancer Res 90:987–992

    PubMed  CAS  Google Scholar 

  53. Rein DT, Roehrig K, Schondorf T (2003) Expression of the hyaluronan receptor RHAMM in endometrial carcinomas suggests a role in tumour progression and metastasis. J Cancer Res Clin Oncol 129:161–164

    PubMed  CAS  Google Scholar 

  54. Abetamann V, Kern HF, Elsasser HP (1996) Differential expression of the hyaluronan receptors CD44 and RHAMM in human pancreatic cancer cells. Clin Cancer Res 2:1607–1618

    PubMed  CAS  Google Scholar 

  55. Greiner J, Ringhoffer M, Taniguchi M (2002) Receptor for hyaluronan acid-mediated motility (RHAMM) is a new immunogenic leukemia-associated antigen in acute and chronic myeloid leukemia. Exp Hematol 30:1029–1035

    PubMed  CAS  Google Scholar 

  56. Assmann V, Gillett CE, Poulsom R, Ryder K, Hart IR, Hanby AM (2001) The pattern of expression of the microtubule-binding protein RHAMM/IHABP in mammary carcinoma suggests a role in the invasive behaviour of tumour cells. J Pathol 195:191–196

    PubMed  CAS  Google Scholar 

  57. Wang C, Thor AD, Moore DH II et al (1998) The overexpression of RHAMM, a hyaluronan-binding protein that regulates ras signaling, correlates with overexpression of mitogen-activated protein kinase and is a significant parameter in breast cancer progression. Clin Cancer Res 4:567–576

    PubMed  CAS  Google Scholar 

  58. Li H, Guo L, Li JW, Liu N, Qi R, Liu J (2000) Expression of hyaluronan receptors CD44 and RHAMM in stomach cancers: relevance with tumor progression. Int J Oncol 17:927–932

    PubMed  CAS  Google Scholar 

  59. Crainie M, Belch AR, Mant MJ, Pilarski LM (1999) Overexpression of the receptor for hyaluronan-mediated motility (RHAMM) characterizes the malignant clone in multiple myeloma: identification of three distinct RHAMM variants. Blood 93:1684–1696

    PubMed  CAS  Google Scholar 

  60. Lynn BD, Li X, Cattini PA, Turley EA, Nagy JI (2001) Identification of sequence, protein isoforms, and distribution of the hyaluronan-binding protein RHAMM in adult and developing rat brain. J Comp Neurol 439:315–330

    PubMed  CAS  Google Scholar 

  61. Kong QY, Liu J, Chen XY, Wang XW, Sun Y, Li H (2003) Differential expression patterns of hyaluronan receptors CD44 and RHAMM in transitional cell carcinomas of urinary bladder. Oncol Rep 10:51–55

    PubMed  CAS  Google Scholar 

  62. Schmitt M, Schmitt A, Rojewski MT et al (2008) RHAMM-R3 peptide vaccination in patients with acute myeloid leukemia, myelodysplastic syndrome, and multiple myeloma elicits immunologic and clinical responses. Blood 111:1357–1365

    PubMed  CAS  Google Scholar 

  63. Fukui M, Ueno K, Suehiro Y, Hamanaka Y, Imai K, Hinoda Y (2006) Anti-tumor activity of dendritic cells transfected with mRNA for receptor for hyaluronan-mediated motility is mediated by CD4+ T cells. Cancer Immunol Immunother 55:538–546

    PubMed  CAS  Google Scholar 

  64. Greiner J, Li L, Ringhoffer M, Barth TF et al (2005) Identification and characterization of epitopes of the receptor for hyaluronic acid-mediated motility (RHAMM/CD168) recognized by CD8+ T cells of HLA-A2-positive patients with acute myeloid leukemia. Blood 106:938–945

    PubMed  CAS  Google Scholar 

  65. Kuwabara H, Yoneda M, Nagai M, Hayasaki H, Mori H (2004) A new polyclonal antibody that recognizes a human receptor for hyaluronan mediated motility. Cancer Lett 210:73–80

    PubMed  CAS  Google Scholar 

  66. Takahashi H, Iizuka H, Nakashima M (2001) RCAS1 antigen is highly expressed in extramammary Paget’s disease and in advanced stage squamous cell carcinoma of the skin. J Dermatol Sci 26:140–144

    PubMed  CAS  Google Scholar 

  67. Engelsberg A, Hermosilla R, Karsten U, Schulein R, Dorken B, Rehm A (2003) The Golgi protein RCAS1 controls cell surface expression of tumor-associated O-linked glycan antigens. J Biol Chem 278:22998–23007

    PubMed  CAS  Google Scholar 

  68. Nakamura Y, Yamazaki K, Oizumi S et al (2004) Expression of RCAS1 in human gastric carcinoma: a potential mechanism of immune escape. Cancer Sci 95:260–265

    PubMed  CAS  Google Scholar 

  69. Fukuda K, Tsujitani S, Maeta Y, Yamaguchi K, Ikeguchi M, Kaibara N (2002) The expression of RCAS1 and tumor infiltrating lymphocytes in patients with T3 gastric carcinoma. Gastric Cancer 5:220–227

    PubMed  CAS  Google Scholar 

  70. Suzuoki M, Hida Y, Miyamoto M et al (2002) RCAS1 expression as a prognostic factor after curative surgery for extrahepatic bile duct carcinoma. Ann Surg Oncol 9:388–393

    Article  PubMed  Google Scholar 

  71. Ikeguchi M, Hirooka Y, Kaibara N (2003) Gene and protein expression of RCAS1 in hepatocellular carcinoma. Anticancer Res 23:4967–4971

    PubMed  CAS  Google Scholar 

  72. Noguchi K, Enjoji M, Nakamuta M et al (2001) Expression of a tumor-associated antigen RCAS1 in hepatocellular carcinoma. Cancer Lett 168:197–202

    PubMed  CAS  Google Scholar 

  73. Watanabe H, Enjoji M, Nakashima M et al (2003) Clinical significance of serum RCAS1 levels detected by monoclonal antibody 22–1-1 in patients with cholangiocellular carcinoma. J Hepatol 39:559–563

    PubMed  CAS  Google Scholar 

  74. Nakakubo Y, Hida Y, Miyamoto M et al (2003) The prognostic significance of RCAS1 expression in squamous cell carcinoma of the oesophagus. Cancer Lett 177:101–105

    Google Scholar 

  75. Akashi T, Oimomi H, Nishiyama K et al (2003) Expression and diagnostic evaluation of the human tumor-associated antigen RCAS1 in pancreatic cancer. Pancreas 26:49–55

    PubMed  CAS  Google Scholar 

  76. Hiraoka K, Hida Y, Miyamoto M et al (2002) High expression of tumor-associated antigen RCAS1 in pancreatic ductal adenocarcinoma is an unfavorable prognostic marker. Int J Cancer 99:418–423

    PubMed  CAS  Google Scholar 

  77. Ito Y, Yoshida H, Nakano K et al (2003) Overexpression of human tumor-associated antigen, RCAS1, is significantly linked to dedifferentiation of thyroid carcinoma. Oncology 64:83–89

    PubMed  CAS  Google Scholar 

  78. Takahashi S, Urano T, Tsuchiya F et al (2003) EBAG9/RCAS1 expression and its prognostic significance in prostatic cancer. Int J Cancer 106:310–315

    PubMed  CAS  Google Scholar 

  79. Rousseau J, Tetu B, Caron D et al (2002) RCAS1 is associated with ductal breast cancer progression. Biochem Biophys Res Commun 293:1544–1549

    PubMed  CAS  Google Scholar 

  80. Suzuki T, Inoue S, Kawabata W et al (2001) EBAG9/RCAS1 in human breast carcinoma: a possible factor in endocrine-immune interactions. Br J Cancer 85:1731–1737

    PubMed  CAS  Google Scholar 

  81. Iwasaki T, Nakashima M, Watanabe T et al (2000) Expression and prognostic significance in lung cancer of human tumor-associated antigen RCAS1. Int J Cancer 89:488–493

    PubMed  CAS  Google Scholar 

  82. Oizumi S, Yamazaki K, Nakashima M et al (2002) RCAS1 expression: a potential prognostic marker for adenocarcinomas of the lung. Oncology 62:333–339

    PubMed  CAS  Google Scholar 

  83. Kubokawa M, Nakashima M, Yao T et al (2001) Aberrant intracellular localization of RCAS1 is associated with tumor progression of gastric cancer. Int J Oncol 19:695–700

    PubMed  CAS  Google Scholar 

  84. Sonoda K, Kaku T, Hirakawa T et al (2000) The clinical significance of tumor-associated antigen RCAS1 expression in the normal, hyperplastic, and malignant uterine endometrium. Gynecol Oncol 79:424–429

    PubMed  CAS  Google Scholar 

  85. Abe Y, Ohshima K, Nakashima M et al (2003) Expression of apoptosis-associated protein RCAS1 in macrophages of histiocytic necrotizing lymphadenitis. Int J Hematol 77:359–363

    PubMed  CAS  Google Scholar 

  86. Sonoda K, Miyamoto S, Hirakawa T et al (2003) Association between RCAS1 expression and clinical outcome in uterine endometrial cancer. Br J Cancer 89:546–551

    PubMed  CAS  Google Scholar 

  87. Oshikiri T, Hida Y, Miyamoto M et al (2001) RCAS1 as a tumour progression marker: an independent negative prognostic factor in gallbladder cancer. Br J Cancer 85:1922–1927

    PubMed  CAS  Google Scholar 

  88. Matsushima T, Nakashima M, Oshima K et al (2001) Receptor binding cancer antigen expressed on SiSo cells, a novel regulator of apoptosis of erythroid progenitor cells. Blood 98:313–321

    PubMed  CAS  Google Scholar 

  89. Izumi M, Nakanishi Y, Yoshino I, Nakashima M, Watanabe T, Hara N (2001) Expression of tumor-associated antigen RCAS1 correlates significantly with poor prognosis in nonsmall cell lung carcinoma. Cancer 92:446–451

    PubMed  CAS  Google Scholar 

  90. Okada K, Nakashima M, Komuta K et al (2003) Expression of tumor-associated membrane antigen, RCAS1, in human colorectal carcinomas and possible role in apoptosis of tumor-infiltrating lymphocytes. Mod Pathol 16:679–685

    PubMed  Google Scholar 

  91. Wang JY, Hsieh JS, Chen CC et al (2004) Alterations of APC, c-Met, and p53 genes in tumor tissue and serum of patients with gastric cancers. J Surg Res 120:242–248

    PubMed  CAS  Google Scholar 

  92. Yucel OT, Sungur A, Kaya S (2004) c-Met overexpression in supraglottic laryngeal squamous cell carcinoma and its relation to lymph node metastases. Otolaryngol Head Neck Surg 130:698–703

    PubMed  Google Scholar 

  93. Tang Z, Zhao M, Ji J et al (2004) Overexpression of gastrin and c-Met protein involved in human gastric carcinomas and intestinal metaplasia. Oncol Rep 11:333–339

    PubMed  CAS  Google Scholar 

  94. Horiguchi N, Takayama H, Toyoda M et al (2002) Hepatocyte growth factor promotes hepatocarcinogenesis through c-Met autocrine activation and enhanced angiogenesis in transgenic mice treated with diethylnitrosamine. Oncogene 21:1791–1799

    PubMed  CAS  Google Scholar 

  95. Dong G, Lee TL, Yeh NT, Geoghegan J, Waes CV, Chen Z (2004) Metastatic squamous cell carcinoma cells that overexpress c-Met exhibit enhanced angiogenesis factor expression, scattering and metastasis in response to hepatocyte growth factor. Oncogene 23:6199–6208

    PubMed  CAS  Google Scholar 

  96. Yamashita Y, Jeschke MG, Wolf SE (2000) Differential expression of hepatocyte growth factor in liver, kidney, lung, and spleen following burn in rats. Cytokine 12:1293–1298

    PubMed  CAS  Google Scholar 

  97. Knudsen BS, Gmyrek GA, Inra J et al (2002) High expression of the Met receptor in prostate cancer metastasis to bone. Urology 60:1113–1117

    PubMed  Google Scholar 

  98. Boon EM, van der Neut R, van de Wetering M, Clevers H, Pals ST (2002) Wnt signaling regulates expression of the receptor tyrosine kinase met in colorectal cancer. Cancer Res 62:5126–5128

    PubMed  CAS  Google Scholar 

  99. Turoldo A, Balani A, Scaramucci M, Babic F, Guidolin D, Liguori G (2002) Prognostic importance of preoperative CEA in patients with colorectal cancer. Chir Ital 54:469–476

    PubMed  Google Scholar 

  100. Vegh I, Sotelo T, Estenoz J et al (2002) Tumor cytosol carcinoembryonic antigen as prognostic parameter in non-small cell lung cancer. Tumori 88:142–146

    PubMed  Google Scholar 

  101. Kawamoto T, Saitou K, Todoroki T et al (1993) Immunohistochemical detection of proliferating cell nuclear antigen (PCNA) in carcinoma at the confluence of the main hepatic ducts and its relationship to expression of CEA, CA19–9 and EGF receptor. Nippon Shokakibyo Gakkai Zasshi 90:144–153

    PubMed  CAS  Google Scholar 

  102. Alters SE, Gadea JR, Philip R (1997) Immunotherapy of cancer. Generation of CEA specific CTL using CEA peptide pulsed dendritic cells. Adv Exp Med Biol 417:519–524

    PubMed  CAS  Google Scholar 

  103. Kass ES, Greiner JW, Kantor JA et al (2002) Carcinoembryonic antigen as a target for specific antitumor immunotherapy of head and neck cancer. Cancer Res 62:5049–5057

    PubMed  CAS  Google Scholar 

  104. Sanders DS, Wilson CA, Bryant FJ et al (1994) Classification and localisation of carcinoembryonic antigen (CEA) related antigen expression in normal oesophageal squamous mucosa and squamous carcinoma. Gut 35:1022–1025

    PubMed  CAS  Google Scholar 

  105. Grimm T, Riethmüller G, Johnson JP (1994) Characteristics of carcinoembryonic antigen (CEA) expressed in different cell types: evidence that CEA can function as an adhesion molecule and as a repulsion molecule. Biochem Biophys Res Commun 204:1225–1234

    PubMed  CAS  Google Scholar 

  106. Kass E, Schlom J, Thompson J, Guadagni F, Graziano P, Greiner JW (1999) Induction of protective host immunity to carcinoembryonic antigen (CEA), a self-antigen in CEA transgenic mice, by immunizing with a recombinant vaccinia-CEA virus. Cancer Res 59:676–683

    PubMed  CAS  Google Scholar 

  107. Fetsch PA, Cormier J, Hijazi YM (1997) Immunocytochemical detection of MART-1 in fresh and paraffin-embedded malignant melanomas. J Immunother 20:60–64

    PubMed  CAS  Google Scholar 

  108. Busam KJ, Jungbluth AA (1999) Melan-A, a new melanocytic differentiation marker. Adv Anat Pathol 6:12–18

    PubMed  CAS  Google Scholar 

  109. Kageshita T, Kawakami Y, Hirai S, Ono T (1997) Differential expression of MART-1 in primary and metastatic melanoma lesions. J Immunother 20:460–465

    PubMed  CAS  Google Scholar 

  110. Hofbauer GF, Kamarashev J, Geertsen R, Boni R, Dummer R (1998) Melan A/MART-1 immunoreactivity in formalin-fixed paraffin-embedded primary and metastatic melanoma: frequency and distribution. Melanoma Res 8:337–343

    PubMed  CAS  Google Scholar 

  111. Busam KJ, Iversen K, Coplan KA et al (1998) Immunoreactivity for A103, an antibody to melan-A (Mart-1), in adrenocortical and other steroid tumors. Am J Surg Pathol 22:57–63

    PubMed  CAS  Google Scholar 

  112. Lozupone F, Rivoltini L, Luciani F et al (2003) Adoptive transfer of an anti-MART-1(27–35)-specific CD8+ T cell clone leads to immunoselection of human melanoma antigen-loss variants in SCID mice. Eur J Immunol 33:556–560

    PubMed  CAS  Google Scholar 

  113. Mineo R, Costantino A, Frasca F et al (2004) Activation of the hgf/met system in papillary thyroid cancer: biological effects of hgf in thyroid cancer cells depend on met expression levels. Endocrinology 145:4355–4365

    PubMed  CAS  Google Scholar 

  114. Molina R, Jo J, Filella X et al (1999) C-erbB-2, CEA and CA 15.3 serum levels in the early diagnosis of recurrence of breast cancer patients. Anticancer Res 19:2551–2555

    PubMed  CAS  Google Scholar 

  115. Amemiya H, Kono K, Itakura J et al (2002) c-Met expression in gastric cancer with liver metastasis. Oncology 63:286–296

    PubMed  CAS  Google Scholar 

  116. Kang JY, Dolled-Filhart M, Ocal IT et al (2003) Tissue microarray analysis of hepatocyte growth factor/Met pathway components reveals a role for Met, matriptase, and hepatocyte growth factor activator inhibitor 1 in the progression of node-negative breast cancer. Cancer Res 63:1101–1105

    PubMed  CAS  Google Scholar 

  117. Sundblad AS, Pellicer EM, Ricci L (1996) Carcinoembryonic antigen expression in stages I and II breast cancer: its relationship with clinicopathologic factors. Hum Pathol 27:297–301

    PubMed  CAS  Google Scholar 

  118. Jiang XP, Yang DC, Elliott RL, Head JF (2000) Vaccination with a mixed vaccine of autogenous and allogeneic breast cancer cells and tumor associated antigens CA15–3, CEA and CA125—results in immune and clinical responses in breast cancer patients. Cancer Biother Radiopharm 15:495–505

    PubMed  CAS  Google Scholar 

  119. Cheng HL, Trink B, Tzai TS et al (2002) Overexpression of c-Met as a prognostic indicator for transitional cell carcinoma of the urinary bladder: a comparison with p53 nuclear accumulation. J Clin Oncol 20:1544–1550

    PubMed  CAS  Google Scholar 

  120. Baykal C, Ayhan A, Al A, Yuce K, Ayhan A (2003) Overexpression of the c-Met/HGF receptor and its prognostic significance in uterine cervix carcinomas. Gynecol Oncol 88:123–129

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is inspired by Professor Peter Leung. Without Dr. Peter Leung inspiration, this paper would never have been realized. Dr. Peter Leung is a CIHR scientist.

Conflict of interest statement

The authors declare that they have no conflict of interest related to the publication of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Siu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siu, D. Cancer therapy using tumor-associated antigens to reduce side effects. Clin Exp Med 9, 181–198 (2009). https://doi.org/10.1007/s10238-009-0047-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-009-0047-z

Keywords

Navigation