Skip to main content

Advertisement

Log in

Experiments and hyperelastic modeling of porcine meniscus show heterogeneity at high strains

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Constitutive modeling of the meniscus is critical in areas like knee surgery and tissue engineering. At low strain rates, the meniscus can be described using a hyperelastic model. Calibration of hyperelastic material models of the meniscus is challenging on many fronts due to material variability and friction. In this study, we present a framework to determine the hyperelastic material parameters of porcine meniscus (and similar soft tissues) using no-slip uniaxial compression experiments. Because of the nonhomogeneous deformation in the specimens, a finite element solution is required at each step of the iterative calibration process. We employ a Bayesian calibration approach to account for the inherent material variability and a Bayesian optimization approach to minimize the resulting cost function in the material parameter space. Cylindrical specimens of porcine meniscus from the anterior, middle and posterior regions are tested up to 30% compressive strain and the Yeoh form of hyperelastic strain energy density function is used to describe the material response. The results show that the Yeoh form is able to accurately describe the compressive response of porcine meniscus and that the Bayesian calibration and optimization approaches are able to calibrate the model in a computationally efficient manner while taking into account the inherent material variability. The results also show that the shear modulus or the initial stiffness is roughly uniform across the different areas of the meniscus, but there is significant spatial heterogeneity in the response at high strains. In particular, the middle region is considerably stiffer at high strains. This heterogeneity is important to consider in modeling the response of the meniscus for clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kumar Vemaganti.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, T., Shende, S., Lin, CY. et al. Experiments and hyperelastic modeling of porcine meniscus show heterogeneity at high strains. Biomech Model Mechanobiol 21, 1641–1658 (2022). https://doi.org/10.1007/s10237-022-01611-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-022-01611-3

Keywords

Navigation