Aguado BA, Mulyasasmita W, Su J, Lampe KJ, Heilshorn SC (2012) Improving viability of stem cells during syringe needle flow through the design of hydrogel cell carriers. Tissue Eng Part A 18(7–8):806–815
Article
Google Scholar
Alexandrova AY, Arnold K, Schaub S, Vasiliev JM, Meister JJ, Bershadsky AD, Verkhovsky AB (2008) Comparative dynamics of retrograde actin flow and focal adhesions: formation of nascent adhesions triggers transition from fast to slow flow. PLoS ONE 3(9):e3234. https://doi.org/10.1371/journal.pone.0003234
Article
Google Scholar
Bächer C, Gekle S (2019) Computational modeling of active deformable membranes embedded in three-dimensional flows. Phys Rev E 99(6):062418. https://doi.org/10.1103/PhysRevE.99.062418
Article
Google Scholar
Bächer C, Schrack L, Gekle S (2017) Clustering of microscopic particles in constricted blood flow. Phys Rev Fluids 2(1):013102
Article
Google Scholar
Blaeser A, Duarte Campos DF, Puster U, Richtering W, Stevens MM, Fischer H (2015) Controlling shear stress in 3D bioprinting is a key factor to balance printing resolution and stem cell integrity. Adv Healthcare Mater 5(3):326–333. https://doi.org/10.1002/adhm.201500677
Article
Google Scholar
Bongiorno T, Kazlow J, Mezencev R, Griffiths S, Olivares-Navarrete R, McDonald JF, Schwartz Z, Boyan BD, McDevitt TC, Sulchek T (2014) Mechanical stiffness as an improved single-cell indicator of osteoblastic human mesenchymal stem cell differentiation. J Biomech 47(9):2197–2204
Article
Google Scholar
Bower AF (2010) Applied Mechanics of Solids. CRC Press, Boca Raton
Google Scholar
Caille N, Thoumine O, Tardy Y, Meister JJ (2002) Contribution of the nucleus to the mechanical properties of endothelial cells. J Biomech 35(2):177–187. https://doi.org/10.1016/S0021-9290(01)00201-9
Article
Google Scholar
Chim YH, Mason LM, Rath N, Olson MF, Tassieri M, Yin H (2018) A one-step procedure to probe the viscoelastic properties of cells by atomic force microscopy. Sci Rep 8(1):1–12
Article
Google Scholar
Clausen JR, Aidun CK (2010) Capsule dynamics and rheology in shear flow: particle pressure and normal stress. Phys Fluids 22(12):123302. https://doi.org/10.1063/1.3483207
Article
Google Scholar
Devendran D, Peskin CS (2012) An immersed boundary energy-based method for incompressible viscoelasticity. J Comput Phys 231(14):4613–4642
MathSciNet
Article
Google Scholar
Dintwa E, Tijskens E, Ramon H (2008) On the accuracy of the Hertz model to describe the normal contact of soft elastic spheres. Granular Matter 10(3):209–221. https://doi.org/10.1007/s10035-007-0078-7
Article
MATH
Google Scholar
Efremov YM, Wang WH, Hardy SD, Geahlen RL, Raman A (2017) Measuring nanoscale viscoelastic parameters of cells directly from AFM force-displacement curves. Sci Rep 7(1):1541–14
Article
Google Scholar
Fischer-Friedrich E, Hyman AA, Jülicher F, Müller DJ, Helenius J (2014) Quantification of surface tension and internal pressure generated by single mitotic cells. Sci Rep 4:6213. https://doi.org/10.1038/srep06213
Article
Google Scholar
Fischer-Friedrich E, Toyoda Y, Cattin CJ, Müller DJ, Hyman AA, Jülicher F (2016) Rheology of the active cell cortex in mitosis. Biophys J 111(3):589–600. https://doi.org/10.1016/j.bpj.2016.06.008
Article
Google Scholar
Fregin B, Czerwinski F, Biedenweg D, Girardo S, Gross S, Aurich K, Otto O (2019) High-throughput single-cell rheology in complex samples by dynamic real-time deformability cytometry. Nat Commun 10(1):415. https://doi.org/10.1038/s41467-019-08370-3
Article
Google Scholar
Freund JB (2014) Numerical Simulation of Flowing Blood Cells. Annu Rev Fluid Mech 46(1):67–95
MathSciNet
Article
Google Scholar
Gao T, Hu HH (2009) Deformation of elastic particles in viscous shear flow. J Comput Phys 228(6):2132–2151. https://doi.org/10.1016/j.jcp.2008.11.029
Article
MATH
Google Scholar
Gao T, Hu HH, Castañeda PP (2011) Rheology of a suspension of elastic particles in a viscous shear flow. J Fluid Mech 687:209–237
MathSciNet
Article
Google Scholar
Gao T, Hu HH, Castañeda PP (2012) Shape dynamics and rheology of soft elastic particles in a shear flow. Phys Rev Lett 108(5):058302–4
Article
Google Scholar
Ghaemi A, Philipp A, Bauer A, Last K, Fery A, Gekle S (2016) Mechanical behaviour of micro-capsules and their rupture under compression. Chem Eng Sci 142(C):236–243. https://doi.org/10.1016/j.ces.2015.11.002
Article
Google Scholar
Gonzalez-Cruz RD, Fonseca VC, Darling EM (2012) Cellular mechanical properties reflect the differentiation potential of adipose-derived mesenchymal stem cells. Proc Nat Acad Sci (USA) 109(24):E1523–E1529
Article
Google Scholar
Guckenberger A, Schraml MP, Chen PG, Leonetti M, Gekle S (2016) On the bending algorithms for soft objects in flows. Comput Phys Commun 207:1–23. https://doi.org/10.1016/j.cpc.2016.04.018
Article
Google Scholar
Guckenberger A, Kihm A, John T, Wagner C, Gekle S (2018) Numerical-experimental observation of shape bistability of red blood cells flowing in a microchannel. Soft Matter 14(11):2032–2043. https://doi.org/10.1039/C7SM02272G
Article
Google Scholar
Hecht FM, Rheinlaender J, Schierbaum N, Goldmann WH, Fabry B, Schäffer TE (2015) Imaging viscoelastic properties of live cells by AFM: power-law rheology on the nanoscale. Soft Matter 11(23):4584–4591
Article
Google Scholar
Huber F, Schnau J, Rönicke S, Rauch P, Müller K, Fütterer C, Käs J (2013) Emergent complexity of the cytoskeleton: from single filaments to tissue. Adv Phys 62(1):1–112
Article
Google Scholar
Jaiswal D, Cowley N, Bian Z, Zheng G, Claffey KP, Hoshino K (2017) Stiffness analysis of 3D spheroids using microtweezers. PLoS One 12(11):e0188346
Article
Google Scholar
Johnson KL (2003) Contact mechanics, 9th edn. Cambridge University Press, Cambridge
Google Scholar
Khalil S, Sun W (2007) Biopolymer deposition for freeform fabrication of hydrogel tissue constructs. Mater Sci Eng: C 27(3):469–478
Article
Google Scholar
Kiss R (2011) Elasticity of human embryonic stem cells as determined by atomic force microscopy. J Biomech Eng 133(10):101009. https://doi.org/10.1115/1.4005286
Article
Google Scholar
Kollmannsberger P, Fabry B (2011) Linear and nonlinear rheology of living cells. Ann Rev Mater Res 41(1):75–97. https://doi.org/10.1146/annurev-matsci-062910-100351
Article
Google Scholar
Kotsalos C, Latt J, Chopard B (2019) Bridging the computational gap between mesoscopic and continuum modeling of red blood cells for fully resolved blood flow. J Comput Phys 398:108905
MathSciNet
Article
Google Scholar
Kubitschke H, Schnauss J, Nnetu KD, Warmt E, Stange R, Kaes J (2017) Actin and microtubule networks contribute differently to cell response for small and large strains. New J Phys 19(9):093003–13
Article
Google Scholar
Ladjal H, Hanus JL, Pillarisetti A, Keefer C, Ferreira A, Desai JP (2009) Atomic force microscopy-based single-cell indentation: Experimentation and finite element simulation. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, St. Louis, MO, USA, pp 1326–1332, 10.1109/IROS.2009.5354351
Ladjal H, Hanus JL, Pillarisetti A, Keefer C, Ferreira A, Desai JP (2018) Atomic force microscopy-based single-cell indentation: Experimentation and finite element simulation. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2009), IEEE, pp 1326–1332
Lange JR, Steinwachs J, Kolb T, Lautscham LA, Harder I, Whyte G, Fabry B (2015) Microconstriction arrays for high-throughput quantitative measurements of cell mechanical properties. Biophys J 109(1):26–34
Article
Google Scholar
Lange JR, Metzner C, Richter S, Schneider W, Spermann M, Kolb T, Whyte G, Fabry B (2017) Unbiased high-precision cell mechanical measurements with microconstrictions. Biophys J 112(7):1472–1480
Article
Google Scholar
Lehmann M, Müller SJ, Gekle S (2020) Efficient viscosity contrast calculation for blood flow simulations using the lattice Boltzmann method. Int J Numer Meth Fluids 92:1463– 1477. https://doi.org/10.1002/fld.4835
MathSciNet
Article
Google Scholar
Li M, Tian X, Kozinski JA, Chen X, Hwang DK (2015) Modeling mechanical cell damage in the bioprinting process employing a conical needle. J Mech Med Biol 15(05):1550073–15
Article
Google Scholar
Limbach H, Arnold A, Mann B, Holm C (2006) ESPResSo—an extensible simulation package for research on soft matter systems. Comp Phys Commun 174(9):704–727. https://doi.org/10.1016/j.cpc.2005.10.005
Article
Google Scholar
Lulevich V, Zink T, Chen HY, Liu FT, Gy Liu (2006) Cell mechanics using atomic force microscopy-based single-cell compression. Langmuir 22(19):8151–8155. https://doi.org/10.1021/la060561p
Article
Google Scholar
Lulevich VV, Radtchenko IL, Sukhorukov GB, Vinogradova OI (2003) Deformation properties of nonadhesive polyelectrolyte microcapsules studied with the atomic force microscope. J Phys Chem B 107(12):2735–2740. https://doi.org/10.1021/jp026927y
Article
Google Scholar
Lykov K, Nematbakhsh Y, Shang M, Lim CT, Pivkin IV (2017) Probing eukaryotic cell mechanics via mesoscopic simulations. PLoS Comput Biol 13(9):e1005726–22
Article
Google Scholar
Mauer J, Mendez S, Lanotte L, Nicoud F, Abkarian M, Gompper G, Fedosov DA (2018) Flow-induced transitions of red blood cell shapes under shear. Phys Rev Lett 121(11):118103
Article
Google Scholar
Mokbel M, Mokbel D, Mietke A, Träber N, Girardo S, Otto O, Guck J, Aland S (2017) Numerical simulation of real-time deformability cytometry to extract cell mechanical properties. ACS Biomater Sci Eng 3(11):2962–2973
Article
Google Scholar
Mooney M (1940) A theory of large elastic deformation. J Appl Phys 11(9):582–592. https://doi.org/10.1063/1.1712836
Article
MATH
Google Scholar
Mulla Y, MacKintosh FC, Koenderink GH (2019) Origin of Slow Stress Relaxation in the Cytoskeleton. Phys Rev Lett 122(21):218102
Article
Google Scholar
Müller SJ, Mirzahossein E, Iftekhar EN, Bächer C, Schrüfer S, Schubert DW, Fabry B, Gekle S (2020) Flow and hydrodynamic shear stress inside a printing needle during biofabrication. PLOS ONE 15(7):e0236371. https://doi.org/10.1371/journal.pone.0236371
Article
Google Scholar
Neubauer JW, Hauck N, Männel MJ, Seuss M, Fery A, Thiele J (2019) Mechanoresponsive hydrogel particles as a platform for three-dimensional force sensing. ACS Appl Mater Interfaces 11(29):26307–26313. https://doi.org/10.1021/acsami.9b04312
Article
Google Scholar
Nyberg KD, Hu KH, Kleinman SH, Khismatullin DB, Butte MJ, Rowat AC (2017) Quantitative deformability cytometry: rapid, calibrated measurements of cell mechanical properties. Biophys J 113(7):1574–1584
Article
Google Scholar
Otto O, Rosendahl P, Mietke A, Golfier S, Herold C, Klaue D, Girardo S, Pagliara S, Ekpenyong A, Jacobi A, Wobus M, Töpfner N, Keyser UF, Mansfeld J, Fischer-Friedrich E, Guck J (2015) Real-time deformability cytometry: on-the-fly cell mechanical phenotyping. Nat Methods 12(3):199–202. https://doi.org/10.1038/nmeth.3281
Article
Google Scholar
Paxton N, Smolan W, Böck T, Melchels F, Groll J, Jungst T (2017) Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability. Biofabrication 9(4):044107. https://doi.org/10.1088/1758-5090/aa8dd8
Article
Google Scholar
Ramanujan S, Pozrikidis C (1998) Deformation of liquid capsules enclosed by elastic membranes in simple shear flow: large deformations and the effect of fluid viscosities. J Fluid Mech 361:117–143. https://doi.org/10.1017/S0022112098008714
MathSciNet
Article
MATH
Google Scholar
Rivlin RS (1948) Large elastic deformations of isotropic materials. I. fundamental concepts. Philos Trans R Soc A: Math Phys Eng Sci 240(822):459–490. https://doi.org/10.1098/rsta.1948.0002
MathSciNet
Article
MATH
Google Scholar
Roehm D, Arnold A (2012) Lattice Boltzmann simulations on GPUs with ESPResSo. Euro Phys J Spec Top 210(1):89–100. https://doi.org/10.1140/epjst/e2012-01639-6
Article
Google Scholar
Roscoe R (1967) On the rheology of a suspension of viscoelastic spheres in a viscous liquid. J Fluid Mech 28(02):273–21
Article
Google Scholar
Rosti ME, Brandt L, Mitra D (2018) Rheology of suspensions of viscoelastic spheres: Deformability as an effective volume fraction. Phys Rev Fluids 3(1):012301. https://doi.org/10.1103/PhysRevFluids.3.012301
Article
Google Scholar
Saadat A, Guido CJ, Iaccarino G, Shaqfeh ESG (2018) Immersed-finite-element method for deformable particle suspensions in viscous and viscoelastic media. Phys Rev E 98(6):063316. https://doi.org/10.1103/PhysRevE.98.063316
MathSciNet
Article
Google Scholar
Sancho A, Vandersmissen I, Craps S, Luttun A, Groll J (2017) A new strategy to measure intercellular adhesion forces in mature cell-cell contacts. Sci Rep 7(1):46152–14
Article
Google Scholar
Shen Y, Yalikun Y, Tanaka Y (2019) Recent advances in microfluidic cell sorting systems. Sensors Actuators B: Chem 282:268–281. https://doi.org/10.1016/j.snb.2018.11.025
Article
Google Scholar
Smith M (2009) ABAQUS/Standard User’s Manual, Version 6.9. Dassault Systèmes Simulia Corp, United States
Snyder J, Rin Son A, Hamid Q, Wang C, Lui Y, Sun W (2015) Mesenchymal stem cell printing and process regulated cell properties. Biofabrication 7(4):044106. https://doi.org/10.1088/1758-5090/7/4/044106
Article
Google Scholar
Tirella A, Vozzi F, Vozzi G, Ahluwalia A (2011) PAM2 (Piston Assisted Microsyringe): a new rapid prototyping technique for biofabrication of cell incorporated scaffolds. Tiss Eng Part C: Methods 17(2):229–237
Article
Google Scholar
Villone MM, Hulsen MA, Anderson PD, Maffettone PL (2014) Simulations of deformable systems in fluids under shear flow using an arbitrary Lagrangian Eulerian technique. Comp Fluids 90(C):88–100
MathSciNet
Article
Google Scholar
Villone MM, D’Avino G, Hulsen MA, Maffettone PL (2015) Dynamics of prolate spheroidal elastic particles in confined shear flow. Phys Rev E 92(6):062303
Article
Google Scholar
Závodszky G, van Rooij B, Azizi V, Hoekstra A (2017) Cellular level in-silico modeling of blood rheology with an improved material model for red blood cells. Front Physiol 8:061006–14
Article
Google Scholar
Zhao Y, Li Y, Mao S, Sun W, Yao R (2015) The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology. Biofabrication 7(4):045002. https://doi.org/10.1088/1758-5090/7/4/045002
Article
Google Scholar