Skip to main content
Log in

A mechanobiological model to study upstream cell migration guided by tensotaxis

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Cell migration is a process of crucial importance for the human body. It is responsible for important processes such as wound healing and tumor metastasis. Migration may occur in response to stimuli of chemical, physical and mechanical nature occurring in the cellular microenvironment. The interstitial flow (IF) can generate mechanical stimuli in cells that influence the cell behavior and interactions of the cells with the extracellular matrix (ECM). One of the phenomena is upstream migration, which is observed in some tumors. In this work, we present a new approach to study the adherent cell migration in a porous medium using a mechanobiological model, attempting to understand if upstream migration can be generated exclusively by mechanical factors. The influence of IF on the behavior of cells and the extracellular matrix was considered. The model is based on a system of coupled nonlinear differential equations solved by the finite element method. Several simulations were performed to study the upstream cell migration and evaluate the effects of pressure, permeability, ECM stiffness and cellular concentration variations on the cell velocity. The results indicated that upstream migration can occur in the presence of mechanical stimuli generated by IF and that the tested parameters have a direct influence on the cellular velocity, especially the pressure and the permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from Zamora (2013) and Moreo et al. (2008)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ananthakrishnan R, Ehrlicher A (2007) The forces behind cell movement. Int J Biol Sci 3(5):303–317

    Google Scholar 

  • Ando J, Nomura H, Kamiya A (1987) The effect of fluid shear stress on the migration and proliferation of cultured endothelial cells. Microvasc Res 33(1):62–70

    Google Scholar 

  • Beloussov L, Louchinskaia N, Stein A (2000) Tension-dependent collective cell movements in the early gastrula ectoderm of xenopus laevis embryos. Dev Genes Evol 210(2):92–104

    Google Scholar 

  • Bershadsky AD, Balaban NQ, Geiger B (2003) Adhesion-dependent cell mechanosensitivity. Annu Rev Cell Dev Biol 19(1):677–695

    Google Scholar 

  • Biot MA (1956) Theory of propagation of elastic waves in a fluid-saturated porous solid. ii. higher frequency range. J Acoust Soc Am 28(2):179–191

    MathSciNet  Google Scholar 

  • Borau C, Kamm R, García-Aznar J (2011) Mechano-sensing and cell migration: a 3D model approach. Phys Biol 8(6):066008

    Google Scholar 

  • Borau C, Kamm RD, García-Aznar JM (2014a) A time-dependent phenomenological model for cell mechano-sensing. Biomech Model Mechanobiol 13(2):451–462

    Google Scholar 

  • Borau C, Polacheck WJ, Kamm RD, García-Aznar JM (2014b) Probabilistic Voxel-Fe model for single cell motility in 3D. Silico Cell Tissue Sci 1(1):2

    Google Scholar 

  • Boucher Y, Leunig M, Jain RK (1996) Tumor angiogenesis and interstitial hypertension. Cancer Res 56(18):4264–4266

    Google Scholar 

  • Charras G, Sahai E (2014) Physical influences of the extracellular environment on cell migration. Nat Rev Mol Cell Biol 15(12):813–824

    Google Scholar 

  • Chaudhuri PK, Low BC, Lim CT (2018) Mechanobiology of tumor growth. Chem Rev 118(14):6499–6515

    Google Scholar 

  • Cheng B, Lin M, Huang G, Li Y, Ji B, Genin GM, Deshpande VS, Lu TJ, Xu F (2017) Cellular mechanosensing of the biophysical microenvironment: a review of mathematical models of biophysical regulation of cell responses. Phys Life Rev 22:88–119

    Google Scholar 

  • Discher DE, Janmey P, Yl Wang (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139–1143

    Google Scholar 

  • Dokukina IV, Gracheva ME (2010) A model of fibroblast motility on substrates with different rigidities. Biophys J 98(12):2794–2803

    Google Scholar 

  • Evans EB, Brady SW, Tripathi A, Hoffman-Kim D (2018) Schwann cell durotaxis can be guided by physiologically relevant stiffness gradients. Biomater Res 22(1):14

    Google Scholar 

  • Evje S (2017) An integrative multiphase model for cancer cell migration under influence of physical cues from the microenvironment. Chem Eng Sci 165:240–259

    Google Scholar 

  • Fine RA, Millero FJ (1973) Compressibility of water as a function of temperature and pressure. J Chem Phys 59(10):5529–5536

    Google Scholar 

  • Fischer T, Wilharm N, Hayn A, Mierke CT (2017) Matrix and cellular mechanical properties are the driving factors for facilitating human cancer cell motility into 3D engineered matrices. Converg Sci Phys Oncol 3(4):044003

    Google Scholar 

  • Fleury ME, Boardman KC, Swartz MA (2006) Autologous morphogen gradients by subtle interstitial flow and matrix interactions. Biophys J 91(1):113–121

    Google Scholar 

  • Galbraith CG, Yamada KM, Sheetz MP (2002) The relationship between force and focal complex development. J Cell Biol 159(4):695–705

    Google Scholar 

  • Gaspar FJ, Lisbona FJ, Vabishchevich PN (2002) Finite difference schemes for poro-elastic problems. Comput Methods Appl Math 2(2):132–142

    MathSciNet  MATH  Google Scholar 

  • Ghassemi S, Meacci G, Liu S, Gondarenko AA, Mathur A, Roca-Cusachs P, Sheetz MP, Hone J (2012) Cells test substrate rigidity by local contractions on submicrometer pillars. Proc Natl Acad Sci 109(14):5328–5333

    Google Scholar 

  • Goldman J, Conley KA, Raehl A, Bondy DM, Pytowski B, Swartz MA, Rutkowski JM, Jaroch DB, Ongstad EL (2007) Regulation of lymphatic capillary regeneration by interstitial flow in skin. Am J Physiol Heart Circ Physiol 292(5):H2176–H2183

    Google Scholar 

  • Hill AV (1938) The heat of shortening and the dynamic constants of muscle. Proc R Soc Lond B 126(843):136–195

    Google Scholar 

  • Horwitz R, Webb D (2003) Cell migration. Curr Biol 13(19):R756–R759

    Google Scholar 

  • Huang YL, Ck Tung, Zheng A, Kim BJ, Wu M (2015) Interstitial flows promote amoeboid over mesenchymal motility of breast cancer cells revealed by a three dimensional microfluidic model. Integr Biol 7(11):1402–1411

    Google Scholar 

  • Ingber DE (2010) From cellular mechanotransduction to biologically inspired engineering. Ann Biomed Eng 38(3):1148–1161

    Google Scholar 

  • Jacobs CR, Temiyasathit S, Castillo AB (2010) Osteocyte mechanobiology and pericellular mechanics. Annu Rev Biomed Eng 12:369–400

    Google Scholar 

  • Jain RK, Martin JD, Stylianopoulos T (2014) The role of mechanical forces in tumor growth and therapy. Annu Rev Biomed Eng 16:321–346

    Google Scholar 

  • Kalchman J, Fujioka S, Chung S, Kikkawa Y, Mitaka T, Kamm RD, Tanishita K, Sudo R (2013) A three-dimensional microfluidic tumor cell migration assay to screen the effect of anti-migratory drugs and interstitial flow. Microfluid Nanofluid 14(6):969–981

    Google Scholar 

  • Kurniawan NA, Chaudhuri PK, Lim CT (2016) Mechanobiology of cell migration in the context of dynamic two-way cell-matrix interactions. J Biomech 49(8):1355–1368

    Google Scholar 

  • Lachowski D, Cortes E, Pink D, Chronopoulos A, Karim SA, Morton J, Armando E (2017) Substrate rigidity controls activation and durotaxis in pancreatic stellate cells. Sci Rep 7(1):2506

    Google Scholar 

  • Lauffenburger DA, Horwitz AF (1996) Cell migration: a physically integrated molecular process. Cell 84(3):359–369

    Google Scholar 

  • Lee HJ, Diaz MF, Price KM, Ozuna JA, Zhang S, Sevick-Muraca EM, Hagan JP, Wenzel PL (2017) Fluid shear stress activates YAP1 to promote cancer cell motility. Nat Commun 8:14122

    Google Scholar 

  • Li S, Butler P, Wang Y, Hu Y, Han DC, Usami S, Guan JL, Chien S (2002) The role of the dynamics of focal adhesion kinase in the mechanotaxis of endothelial cells. Proc Natl Acad Sci 99(6):3546–3551

    Google Scholar 

  • Lo CM, Wang HB, Dembo M, Yl Wang (2000) Cell movement is guided by the rigidity of the substrate. Biophys J 79(1):144–152

    Google Scholar 

  • Mak M, Spill F, Kamm RD, Zaman MH (2016) Single-cell migration in complex microenvironments: mechanics and signaling dynamics. J Biomech Eng 138(2):02100–021004–8

    Google Scholar 

  • Malek AM, Alper SL, Izumo S (1999) Hemodynamic shear stress and its role in atherosclerosis. JAMA 282(21):2035–2042

    Google Scholar 

  • Marcq P, Yoshinaga N, Prost J (2011) Rigidity sensing explained by active matter theory. Biophys J 101(6):33–35

    Google Scholar 

  • Marzban B, Yi X, Yuan H (2018) A minimal mechanics model for mechanosensing of substrate rigidity gradient in durotaxis. Biomech Model Mechanobiol 17(3):915–922

    Google Scholar 

  • Mascheroni P, Carfagna M, Grillo A, Boso D, Schrefler B (2018) An avascular tumor growth model based on porous media mechanics and evolving natural states. Math Mech Solids 23(4):686–712

    MathSciNet  MATH  Google Scholar 

  • Miyamoto S, Teramoto H, Coso OA, Gutkind JS, Burbelo PD, Akiyama SK, Yamada KM (1995) Integrin function: molecular hierarchies of cytoskeletal and signaling molecules. J Cell Biol 131(3):791–805

    Google Scholar 

  • Moreo P, García Aznar JM, Doblaré M (2008) Modeling mechanosensing and its effect on the migration and proliferation of adherent cells. Acta Biomater 4(3):613–621

    Google Scholar 

  • Munson JM, Bellamkonda RV, Swartz MA (2013) Interstitial flow in a 3D microenvironment increases glioma invasion by a CXCR4-dependent mechanism. Cancer Res 73(5):1536–1546

    Google Scholar 

  • Muraki K, Tanigaki K (2015) Neuronal migration abnormalities and its possible implications for schizophrenia. Front Neurosci 9:74

    Google Scholar 

  • Parker KK, Brock AL, Brangwynne C, Mannix RJ, Wang N, Ostuni E, Geisse NA, Adams JC, Whitesides GM, Ingber DE (2002) Directional control of lamellipodia extension by constraining cell shape and orienting cell tractional forces. FASEB J 16(10):1195–1204

    Google Scholar 

  • Pedersen JA, Lichter S, Swartz MA (2010) Cells in 3D matrices under interstitial flow: effects of extracellular matrix alignment on cell shear stress and drag forces. J Biomech 43(5):900–905

    Google Scholar 

  • Plotnikov SV, Pasapera AM, Sabass B, Waterman CM (2012) Force fluctuations within focal adhesions mediate ecm-rigidity sensing to guide directed cell migration. Cell 151(7):1513–1527

    Google Scholar 

  • Polacheck WJ, Charest JL, Kamm RD (2011) Interstitial flow influences direction of tumor cell migration through competing mechanisms. Proc Natl Acad Sci 108(27):11115–11120

    Google Scholar 

  • Polacheck WJ, Zervantonakis IK, Kamm RD (2013) Tumor cell migration in complex microenvironments. Cell Mol Life Sci 70(8):1335–1356

    Google Scholar 

  • Polacheck WJ, German AE, Mammoto A, Ingber DE, Kamm RD (2014) Mechanotransduction of fluid stresses governs 3D cell migration. Proc Natl Acad Sci 111(7):2447–2452

    Google Scholar 

  • Rassier D, MacIntosh B, Herzog W (1999) Length dependence of active force production in skeletal muscle. J Appl Physiol 86(5):1445–1457

    Google Scholar 

  • Riveline D, Zamir E, Balaban NQ, Schwarz US, Ishizaki T, Narumiya S, Kam Z, Geiger B, Bershadsky AD (2001) Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J Cell Biol 153(6):1175–1186

    Google Scholar 

  • Saez A, Ghibaudo M, Buguin A, Silberzan P, Ladoux B (2007) Rigidity-driven growth and migration of epithelial cells on microstructured anisotropic substrates. Proc Natl Acad Sci 104(20):8281–8286

    Google Scholar 

  • Sawada Y, Tamada M, Dubin-Thaler BJ, Cherniavskaya O, Sakai R, Tanaka S, Sheetz MP (2006) Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell 127(5):1015–1026

    Google Scholar 

  • Schwarz US, Bischofs IB (2005) Physical determinants of cell organization in soft media. Med Eng Phys 27(9):763–772

    Google Scholar 

  • Swartz MA, Fleury ME (2007) Interstitial flow and its effects in soft tissues. Annu Rev Biomed Eng 9(1):229–256

    Google Scholar 

  • Swartz MA, Lund AW (2012) Lymphatic and interstitial flow in the tumour microenvironment: linking mechanobiology with immunity. Nat Rev Cancer 12(3):210–219

    Google Scholar 

  • Tlili S, Gauquelin E, Li B, Cardoso O, Ladoux B, Delanoë-Ayari H, Graner F (2018) Collective cell migration without proliferation: density determines cell velocity and wave velocity. R Soc Open Sci 5(5):172421

    Google Scholar 

  • Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3(5):349–363

    Google Scholar 

  • Waldeland JO, Evje S (2018a) Competing tumor cell migration mechanisms caused by interstitial fluid flow. J Biomech 81:22–35

    Google Scholar 

  • Waldeland JO, Evje S (2018b) A multiphase model for exploring tumor cell migration driven by autologous chemotaxis. Chem Eng Sci 191:268–287

    Google Scholar 

  • Weinberg SH, Mair DB, Lemmon CA (2017) Mechanotransduction dynamics at the cell-matrix interface. Biophys J 112(9):1962–1974

    Google Scholar 

  • Wu PH, Giri A, Wirtz D (2015) Statistical analysis of cell migration in 3D using the anisotropic persistent random walk model. Nat Protoc 10(3):517

    Google Scholar 

  • Zaidel-Bar R, Milo R, Kam Z, Geiger B (2007) A paxillin tyrosine phosphorylation switch regulates the assembly and form of cell-matrix adhesions. J Cell Sci 120(1):137–148

    Google Scholar 

  • Zaman MH, Kamm RD, Matsudaira P, Lauffenburger DA (2005) Computational model for cell migration in three-dimensional matrices. Biophys J 89(2):1389–1397

    Google Scholar 

  • Zamir E, Geiger B (2001) Molecular complexity and dynamics of cell-matrix adhesions. J Cell Sci 114(20):3583–3590

    Google Scholar 

  • Zamora CB (2013) Multiscale computational modeling of single cell migration in 3d. PhD thesis, Universidad de Zaragoza

Download references

Acknowledgements

The authors acknowledge the support of the Brazilian funding agencies CAPES, CNPq and FAPEMIG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Libardo Andrés González-Torres.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Weak formulation of the finite element method

Appendix: Weak formulation of the finite element method

In the finite element discretization method, the application of weak formulation in the differential equations is required, which allows developing the systems of integrable equations. For the application of this method, test functions of the variable unknowns \(\left( {\mathbf {u}}, n, P\right)\) are considered. After the application of the weak formulation, first Green identity was used to reduce the order of derivatives in differential equations. The next step for developing the system of integrable equations was temporal and spatial discretization. For temporal discretization, the backward Euler method was used. For spatial discretization, the interpolation of the model variables was performed through the shape functions associated with \({\mathbf {u}}\), n and P. For each discretized element \({\Omega ^e}\), the interpolation can be written as follows:

$$\begin{aligned} n^h|_{\varOmega ^e} = {\mathbf {N}}_n{\mathbf {n}}^e P^h|_{\varOmega ^e} = {\mathbf {N}}_P{\mathbf {P}}^e {\mathbf {u}}^h|_{\varOmega ^e} = \mathbf {N_{u}}{\mathbf {u}}^e \end{aligned}$$
(11)

where \({\mathbf {n}}^e\), \({\mathbf {P}}^e\) and \({\mathbf {u}}^e\) are the nodal values vectors and \({\mathbf {N}}_n\), \({\mathbf {N}}_P\) and \(\mathbf {N_{u}}\) the matrices of shape functions. Both are evaluated for each discretized element \({\Omega ^e}\) and each integration point h.

Nonlinear differential equations are solved through the Newton–Raphson method. The application of this method is based on an iterative process that involves solving of linear system of equations developed by weak formulation of equations and their discretization. Basically, the Newton–Raphson method is based on the assembly of the residual vector, denoted by \({\mathbf {R}}^a\), and a Jacobian matrix, also called tangent stiffness matrix, denoted by \({\mathbf {K}}_{T}\left( {\mathbf {X}}^a\right)\), where a is the ath increment and \({\mathbf {X}}^a\) represents the vector of model variables. The residual vector is a result of equilibrium of internal and external forces of the model. This equilibrium is expressed in the form:

$$\begin{aligned} {\mathbf {f}}_{i, k+1}^e = {\mathbf {f}}_{i, k+1}^{\mathrm{{int}},e} - {\mathbf {f}}_{i, k+1}^{\mathrm{{ext}},e},\quad i = {\mathbf {u}}, n, P \end{aligned}$$
(12)

The residual vector is represented as follows:

$$\begin{aligned} {\mathbf {R}}_{k+1}^e = \left[ {\mathbf {f}}_{{\mathbf {u}}, k+1}^e, {\mathbf {f}}_{n, k+1}^e, {\mathbf {f}}_{P, k+1}^e\right] ^{\mathrm{T}} \end{aligned}$$
(13)

and the contribution of the each component is shown below:

$$\begin{aligned} {\mathbf {f}}_{{\mathbf {u}},k+1}^e= & {} \int _{{\Omega }^{e}}{\mathbf {B}}_{{\mathbf {u}}}^{\mathrm{T}}\left[ {\mathbf {D}}_{\mathrm{ecm}}{\mathbf {H}}{\mathbf {u}}^{h}+{\mathbf {D}}_{\mathrm{cell}} {\mathbf {H}}{\mathbf {u}}^{h}+\frac{K_{\mathrm{cell}}n^h}{1+\lambda n^h}{\mathbf {I}}\right] _{k+1}{\mathrm{d}}{\Omega }\nonumber \\&+\,\int _{\Omega ^{e}}{\mathbf {N}}_{{\mathbf {u}}}^{\mathrm{T}} \left[ \nabla P^{h} + c_{a}\frac{\kappa }{\phi \eta }n^{h}\nabla P^{h}\right] _{k+1}{\mathrm{d}}{\Omega } \end{aligned}$$
(14)
$$\begin{aligned} {\mathbf {f}}_{n,k+1}^e= & {} \int _{{\Omega }^{e}}{\mathbf {N}}_{n}^{\mathrm{T}}\frac{n_{k+1}^h - n_{k}^h}{\Delta t}{\mathrm{d}}{\Omega } + \int _{{\Omega }^{e}}\nabla {\mathbf {N}}_{n}^{\mathrm{T}}\left[ D\nabla n^h \right. \nonumber \\&-\, n^h\frac{{\mathbf {u}}^h - {\mathbf {u}}_{k}^h}{\Delta t} - MK_{\mathrm{cell}}\frac{n^h}{1+\lambda n^h}\nabla \theta ^h\nonumber \\&\left. -\, \frac{Mp_{cell}\theta ^h}{\left( 1+\lambda n^h\right) ^2}\nabla n^h \right] _{k+1}{\mathrm{d}}{\Omega } \end{aligned}$$
(15)
$$\begin{aligned} {\mathbf {f}}_{P,k+1}^e= & {} \int _{{\Omega }^{e}}{\mathbf {N}}_{P}^{\mathrm{T}}\gamma \frac{P_{k+1}^h - P_{k}^h}{\Delta t}{\mathrm{d}}{\Omega } + \int _{{\Omega }^{e}} \nabla {\mathbf {N}}_{P}^{\mathrm{T}}\frac{\kappa }{\eta }\nabla P_{k+1}^h {\mathrm{d}}{\Omega } \nonumber \\&- \int _{{\Omega }^{e}}\nabla {\mathbf {N}}_{P}^{\mathrm{T}} \frac{{\mathbf {u}}_{k+1}^h - {\mathbf {u}}_{k}^h}{\Delta t}{\mathrm{d}}{\Omega } \end{aligned}$$
(16)

The tangent stiffness matrix, or Jacobian matrix, is obtained by linearizing the external and internal forces of the system of equations resulting from the application of the weak formulation by the finite element method. The relationship between the components associated with internal and external stiffness matrix can be expressed as follows:

$$\begin{aligned} {\mathbf {k}}^e|_{k+1} = {\mathbf {k}}^{\mathrm{{int}},e}|_{k+1} + {\mathbf {k}}^{\mathrm{{ext}},e}|_{k+1} \end{aligned}$$
(17)

In the matrix form, the tangent stiffness matrix can be expressed in the form:

$$\begin{aligned} {\mathbf {K}}_{T}^e|_{k+1} = \begin{bmatrix} {\mathbf {k}}_{\mathbf {uu}}^e &{}&{} {\mathbf {k}}_{{\mathbf {u}}n}^e &{}&{} {\mathbf {k}}_{{\mathbf {u}}P}^e \\ {\mathbf {k}}_{n{\mathbf {u}}}^e &{}&{} {\mathbf {k}}_{nn}^e &{}&{} {\mathbf {0}} \\ {\mathbf {k}}_{P{\mathbf {u}}}^e &{}&{} {\mathbf {0}} &{}&{} {\mathbf {k}}_{PP}^e \end{bmatrix}_{k+1} {\mathrm{where}} \quad {\mathbf {k}}_{ij}^e = \frac{\partial {\mathbf {f}}_{i}^e}{\partial j} \end{aligned}$$
(18)

and the contribution of each component in tangent stiffness matrix is:

$$\begin{aligned} {\mathbf {k}}_{\mathbf {uu},k+1}^e= & {} \int _{{\Omega }^{e}}{\mathbf {B}}_{{\mathbf {u}}}^{\mathrm{T}}{\mathbf {D}}_{\mathrm{ecm}}{\mathbf {B}}_{\mathbf {u}}{\mathrm{d}}{\Omega }+ \int _{\Omega ^{e}}{\mathbf {B}}_{{\mathbf {u}}}^{\mathrm{T}}{\mathbf {D}}_{\mathrm{cell}}{\mathbf {B}}_{\mathbf {u}}{\mathrm{d}}{\Omega } \end{aligned}$$
(19)
$$\begin{aligned} {\mathbf {k}}_{{\mathbf {u}}n,k+1}^e= & {} \int _{{\Omega }^{e}}{\mathbf {B}}_{{\mathbf {u}}}^{\mathrm{T}}\left[ {\mathbf {D}}_{\mathrm{cell}}^*{\mathbf {H}}{\mathbf {u}}^h + \frac{K_{\mathrm{cell}}^*}{\left( 1+\lambda n^h\right) ^2}{\mathbf {I}}\right] {\mathrm{d}}\Omega \nonumber \\&+ \int _{{\Omega }^{e}}{\mathbf {N}}_{{\mathbf {u}}}^{\mathrm{T}}c_{a} \frac{\kappa }{\eta }\nabla P_{k+1}^h{\mathbf {N}}_n{\mathrm{d}}\Omega \end{aligned}$$
(20)
$$\begin{aligned} {\mathbf {k}}_{{\mathbf {u}}p,k+1}^e= & {} \int _{{\Omega }^{e}}{\mathbf {N}}_{{\mathbf {u}}}^{\mathrm{T}}\nabla {\mathrm{N}}_P{\mathrm{d}}\Omega \nonumber \\&+ \int _{{\Omega }^{e}}{\mathbf {N}} _{{\mathbf {u}}}^{\mathrm{T}}c_a\frac{\kappa }{\phi \eta }n_{k+1}^h\nabla {\mathrm{N}}_P{\mathrm{d}}\Omega \end{aligned}$$
(21)
$$\begin{aligned} {\mathbf {k}}_{nn,k+1}^e= & {} \frac{1}{\Delta t}\int _{{\Omega }^{e}}{\mathbf {N}}_{\mathrm{n}}^{\mathrm{T}}{\mathbf {N}}_{\mathrm{n}}{\mathrm{d}}\Omega + \int _{{\Omega }^{e}} \nabla {\mathbf {N}}_{\mathrm{n}}^{\mathrm{T}}\left[ D \right. \nonumber \\&\left. - \frac{Mp_{\mathrm{cell}}\theta ^h}{\left( 1 + \lambda n^h\right) ^2}\right] _{k+1}\nabla {\mathbf {N}}_P {\mathrm{d}}\Omega \nonumber \\&+ \int _{{\Omega }^{e}}\nabla {\mathbf {N}}_{\mathrm{n}}^{\mathrm{T}}\left[ \frac{2\lambda Mp_{\mathrm{cell}}\theta ^h}{\left( 1+\lambda n^h\right) ^3}\nabla n^h \right. \nonumber \\&\left. - \frac{{\mathbf {u}}_{k+1}^h - {\mathbf {u}}_{k}^h}{\Delta t} - \frac{MK_{\mathrm{cell}}\nabla \theta ^h}{\left( 1 + \lambda n^h\right) }\right] _{k+1}{\mathbf {N}} _n{\mathrm{d}}\Omega \end{aligned}$$
(22)
$$\begin{aligned} {\mathbf {k}}_{n{\mathbf {u}},k+1}^e= & {} -\frac{1}{\Delta t}\int _{{\Omega }^{e}}\nabla {\mathbf {N}}_{n}^{\mathrm{T}}n_{k+1}^h{\mathbf {N}}_{{\mathbf {u}}}{\mathrm{d}}\Omega \nonumber \\&- \int _{{\Omega }^{e}}\nabla {\mathbf {N}}_{n}^{\mathrm{T}}\frac{MK_{\mathrm{cell}}n_{k+1}^h}{1 + \lambda n_{k+1}^h}\mathrm{Hess}\mathbf {N_u}{\mathrm{d}}\Omega \nonumber \\&- \int _{{\Omega }^{e}}\nabla {\mathbf {N}}_{n}^{\mathrm{T}}\frac{MK_{\mathrm{cell}}}{\left( 1 + \lambda n_{k+1}^h\right) ^2}\nabla n_{k+1}^h\nabla ^{*}\mathbf {N_u}{\mathrm{d}} \Omega \end{aligned}$$
(23)
$$\begin{aligned} {\mathbf {k}}_{PP,k+1}^e= & {} \frac{1}{\Delta t}\int _{{\Omega }^{e}}{\mathbf {N}}_{P}^{\mathrm{T}}\gamma {\mathbf {N}}_{P}{\mathrm{d}}\Omega + \int _{{\Omega }^{e}}\nabla {\mathbf {N}} _{P}^{\mathrm{T}}\frac{\kappa }{\eta }\nabla {\mathbf {N}}_{P}{\mathrm{d}}\Omega \end{aligned}$$
(24)
$$\begin{aligned} {\mathbf {k}}_{P{\mathbf {u}},k+1}^e= & {} -\frac{1}{\Delta t}\int _{{\Omega }^{e}}\nabla {\mathbf {N}}_{P}^{\mathrm{T}}\gamma {\mathbf{N}}_{P}{\mathrm{d}}\Omega \end{aligned}$$
(25)

Using the local residual vector (Eq. 13) and local tangent stiffness matrix (Eq. 18), it is possible to assemble the global residual vector and the global tangent stiffness matrix required to solve the equation by the Newton–Raphson method.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosalem, G.S., Las Casas, E.B., Lima, T.P. et al. A mechanobiological model to study upstream cell migration guided by tensotaxis. Biomech Model Mechanobiol 19, 1537–1549 (2020). https://doi.org/10.1007/s10237-020-01289-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-020-01289-5

Keywords

Navigation