Skip to main content
Log in

Modelling the electrical activity of skeletal muscle tissue using a multi-domain approach

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Electromyography (EMG) can be used to study the behaviour of the motor neurons and thus provides insights into the physiology of the central nervous system. However, due to the high complexity of neuromuscular control, EMG signals are challenging to interpret. While the exact knowledge of the excitation patterns of a specific muscle within an in vivo experimental setting remains elusive, simulations allow to systematically investigate EMG signals in a controlled environment. Within this context, simulations can provide virtual EMG data, which, for example, can be used to validate and optimise signal analysis methods that aim to estimate the relationship between EMG signals and the output of motor neuron pools. However, since existing methods, which are employed to compute EMG signals, exhibit deficiencies with respect to the physical model itself as well as with respect to numerical aspects, we propose a novel homogenised continuum model that closely resolves the electro-physiological behaviour of skeletal muscle tissue. The proposed model is based on an extension of the well-established bidomain model and includes a biophysically detailed description of the electrical activity within the tissue, which is due to the depolarisation of the muscle fibre membranes. In contrast to all other published EMG models, which assume that the electrical potential field for each muscle fibre can be calculated independently, the proposed model assumes that the electrical potential in the muscle fibres is coupled to the electrical potential in the extracellular space. We show that the newly proposed model is able to simulate realistic EMG signals and demonstrate the potential to employ the predicted virtual EMG signal in order to evaluate the goodness of automated decomposition algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adrian RH, Chandler WK, Hodgkin AL (1970) Voltage clamp experiments in striated muscle fibres. J Physiol 208(3):607–644

    Article  Google Scholar 

  • Blijham PJ, Ter Laak HJ, Schelhaas HJ, Van Engelen B, Stegeman DF, Zwarts MJ (2006) Relation between muscle fiber conduction velocity and fiber size in neuromuscular disorders. J Appl Physiol 100(6):1837–1841

    Article  Google Scholar 

  • Bradley CP, Emamy N, Ertl T, Göddeke D, Hessenthaler A, Klotz T, Krämer A, Krone M, Maier B, Mehl M, Rau T, Röhrle O (2018) Enabling detailed, biophysics-based skeletal muscle models on hpc systems. Front Physiol 9:816. https://doi.org/10.3389/fphys.2018.00816

    Article  Google Scholar 

  • Bryant SH (1969) Cable properties of external intercostal muscle fibres from myotonic and nonmyotonic goats. J Physiol 204:539–550. https://doi.org/10.1113/jphysiol.1969.sp008930

    Article  Google Scholar 

  • Buist ML, Poh YC (2010) An extended bidomain framework incorporating multiple cell types. Biophys J 99(1):13–18. https://doi.org/10.1016/j.bpj.2010.03.054

    Article  Google Scholar 

  • Cannon S, Brown R, Corey D (1993) Theoretical reconstruction of myotonia and paralysis caused by incomplete inactivation of sodium channels. Biophys J 65(1):270–288

    Article  Google Scholar 

  • Carriou V, Boudaoud S, Laforet J (2018) Speedup computation of hd-semg signals using a motor unit-specific electrical source model. Med Biol Eng Comput 56(8):1459–1473. https://doi.org/10.1007/s11517-018-1784-5

    Article  Google Scholar 

  • Clayton R, Bernus O, Cherry E, Dierckx H, Fenton FH, Mirabella L, Panfilov AV, Sachse FB, Seemann G, Zhang H (2011) Models of cardiac tissue electrophysiology: progress, challenges and open questions. Prog Biophys Mol Biol 104(1–3):22–48

    Article  Google Scholar 

  • Corrias A, Pathmanathan P, Gavaghan DJ, Buist ML (2012) Modelling tissue electrophysiology with multiple cell types: applications of the extended bidomain framework. Integr Biol 4(2):192–201

    Article  Google Scholar 

  • Del Vecchio A, Negro F, Felici F, Farina D (2017) Distribution of muscle fibre conduction velocity for representative samples of motor units in the full recruitment range of the tibialis anterior muscle. Acta Physiol 222(2):e12,930. https://doi.org/10.1111/apha.12930

    Article  Google Scholar 

  • Dimitrova NA, Dimitrov AG, Dimitrov GV (1999) Calculation of extracellular potentials produced by an inclined muscle fibre at a rectangular plate electrode. Med Eng Phys 21:583–588. https://doi.org/10.1016/S1350-4533(99)00087-9

    Article  Google Scholar 

  • Epstein BR, Foster KR (1983) Anisotropy in the dielectric properties of skeletal muscle. Med Biol Eng Comput 21(1):51. https://doi.org/10.1007/BF02446406

    Article  Google Scholar 

  • Farina D, Merletti R (2001) A novel approach for precise simulation of the EMG signal detected by surface electrodes. IEEE Trans Biomed Eng 48:637–646. https://doi.org/10.1109/10.923782

    Article  Google Scholar 

  • Farina D, Merletti R (2004) Methods for estimating muscle fibre conduction velocity from surface electromyographic signals. Med Biol Eng Comput 42(4):432–445

    Article  Google Scholar 

  • Farina D, Mesin L, Martina S (2004) Advances in surface electromyographic signal simulation with analytical and numerical descriptions of the volume conductor. Med Biol Eng Comput 42:467–476. https://doi.org/10.1007/BF02350987

    Article  Google Scholar 

  • Farina D, Cescon C, Negro F, Enoka RM (2008) Amplitude cancellation of motor-unit action potentials in the surface electromyogram can be estimated with spike-triggered averaging. J Neurophysiol 100(1):431–440

    Article  Google Scholar 

  • FitzHugh R (1961) Impulses and physiological states in theoretical models of nerve membrane. Biophys J 1(6):445–466

    Article  Google Scholar 

  • Fuglevand AJ, Winter DA, Patla AE, Stashuk D (1992) Detection of motor unit action potentials with surface electrodes: influence of electrode size and spacing. Biol Cybern 67(2):143–153

    Article  Google Scholar 

  • Fuglevand AJ, Winter DA, Patla AE (1993) Models of recruitment and rate coding organization in motor unit pools. J Neurophys 70(6):2470–2488

    Article  Google Scholar 

  • Gabriel S, Lau RW, Gabriel C (1996) The dielectric properties of biological tissues: Ii. measurements in the frequency range 10 hz to 20 ghz. Phys Med Biol 41(11):2251

    Article  Google Scholar 

  • Geers MGD, Kouznetsova VG, Matouš K, Yvonnet J (2017) Homogenization methods and multiscale modeling: nonlinear problems. In: Stein E, de Borst R, Hughes TJR (eds) Encyclopedia of computational mechanics second edition. https://doi.org/10.1002/9781119176817.ecm2107

  • Gielen FLH, Wallinga-de Jonge W, Boon KL (1984) Electrical conductivity of skeletal muscle tissue: experimental results from different musclesin vivo. Med Biol Eng Comput 22(6):569–577. https://doi.org/10.1007/BF02443872

    Article  Google Scholar 

  • Gizzi L, Lenti M, Felici F, Filligoi G (2008) Muscle fibers conduction velocity in cycling: a cross correlation-based application for dynamic exercise. In: IET Conference proceedings

  • Griffiths DJ (2013) Introduction to electrodynamics, 4th edn. Pearson, Boston

    Google Scholar 

  • Hakansson C (1956) Conduction velocity and amplitude of the action potential as related to circumference in the isolated fibre of frog muscle. Acta Physiol Scand 37(1):14–34

    Article  Google Scholar 

  • Heidlauf T, Röhrle O (2013) Modeling the chemoelectromechanical behavior of skeletal muscle using the parallel open-source software library open CMISS. Comput Math Methods Med 2013:1–14. https://doi.org/10.1155/2013/517287

    Article  MATH  Google Scholar 

  • Henneman E, Somjen G, Carpenter DO (1965) Functional significance of cell size in spinal motoneurons. J Neurophysiol 28(3):560–580

    Article  Google Scholar 

  • Henriquez CS (1993) Simulating the electrical behavior of cardiac tissue using the bidomain model. Crit Rev Biomed Eng 21(1):1–77

    MathSciNet  Google Scholar 

  • Hill R (1963) Elastic properties of reinforced solids: some theoretical principles. J Mech Phys Solids 11:357–372

    Article  MATH  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544. https://doi.org/10.1113/jphysiol.1952.sp004764

    Article  Google Scholar 

  • Holobar A, Minetto MA, Botter A, Negro F, Farina D (2010) Experimental analysis of accuracy in the identification of motor unit spike trains from high-density surface emg. IEEE Trans Neural Syst Rehabil Eng 18(3):221–229

    Article  Google Scholar 

  • Huang Q, Eason JC, Claydon FJ (1999) Membrane polarization induced in the myocardium by defibrillation fields: an idealized 3-d finite element bidomain/monodomain torso model. IEEE Trans Biomed Eng 46(1):26–34

    Article  Google Scholar 

  • Kandel ER, Schwartz JH, Jessell TM et al (2000) Principles of neural science, vol 4. McGraw-Hill, New York

    Google Scholar 

  • Keener J, Sneyd J (2009) Mathematical physiology II: cellular physiology, vol 2, 2nd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  • Kim JH, Trew ML, Pullan AJ, Röhrle O (2012) Simulating a dual-array electrode configuration to investigate the influence of skeletal muscle fatigue following functional electrical stimulation. Comput Biol Med 42(9):915–924. https://doi.org/10.1016/j.compbiomed.2012.07.004

    Article  Google Scholar 

  • Lloyd CM, Halstead MD, Nielsen PF (2004) Cellml: its future, present and past. Prog Biophys Mol Biol 85(2):433–450. https://doi.org/10.1016/j.pbiomolbio.2004.01.004 (Modelling cellular and tissue function)

    Article  Google Scholar 

  • Lowery MM, Stoykov NS, Taflove A, Kuiken TA (2002) A multiple-layer finite-element model of the surface EMG signal. IEEE Trans Biomed Eng 49(5):446–454. https://doi.org/10.1109/10.995683

    Article  Google Scholar 

  • Lowery MM, Stoykov NS, Dewald PA, Kuiken TA (2004) Volume conduction in an anatomically based surface EMG model. IEEE Trans Biomed Eng 51:2138–2147. https://doi.org/10.1109/TBME.2004.836494

    Article  Google Scholar 

  • MacIntosh RB, Gardiner FP, McComas JA (2006) Skeletal muscle: form and function, 2nd edn. Human Kinetics, New York

    Google Scholar 

  • Maffiuletti NA, Minetto MA, Farina D, Bottinelli R (2011) Electrical stimulation for neuromuscular testing and training: state-of-the art and unresolved issues. Eur J Appl Physiol 111:2391. https://doi.org/10.1007/s00421-011-2133-7

    Article  Google Scholar 

  • MATLAB (2016) Version 9.0.0.341360 (R2016a). Natick, Massachusetts: The MathWorks Inc

  • Merletti R, Parker PA (2004) Electromyography: physiology, engineering, and non-invasive applications, vol 11. Wiley, London

    Book  Google Scholar 

  • Merletti R, Farina D, Gazzoni M, Schieroni MP (2002) Effect of age on muscle functions investigated with surface electromyography. Muscle Nerve 25(1):65–76

    Article  Google Scholar 

  • Mesin L (2005) Analytical generation model of surface electromyogram for multi-layer volume conductors. Model Med Biol VI WIT 8:95–110. https://doi.org/10.2495/BIO050101

    Article  Google Scholar 

  • Mesin L (2013) Volume conductor models in surface electromyography: computational techniques. Comput Biol Med 43(7):942–952. https://doi.org/10.1016/j.compbiomed.2013.02.002

    Article  Google Scholar 

  • Mesin L, Joubert M, Hanekom T, Merletti R, Farina D (2006) A finite element model for describing the effect of muscle shortening on surface EMG. IEEE Trans Biomed Eng 53:600–693. https://doi.org/10.1109/TBME.2006.870256

    Article  Google Scholar 

  • Miller WT, Geselowitz DB (1978) Simulation studies of the electrocardiogram. I. The normal heart. Circ Res 43(2):301–315. https://doi.org/10.1161/01.RES.43.2.301

    Article  Google Scholar 

  • Mordhorst M, Heidlauf T, Röhrle O (2015) Predicting electromyographic signals under realistic conditions using a multiscale chemo-electro-mechanical finite element model. Interface Focus 5(2):1–11. https://doi.org/10.1098/rsfs.2014.0076

    Article  Google Scholar 

  • Mordhorst M, Strecker T, Wirtz D, Heidlauf T, Röhrle O (2017) POD-DEIM reduction of computational EMG models. J Comput Sci 19:86–96. https://doi.org/10.1016/j.jocs.2017.01.009

    Article  MathSciNet  Google Scholar 

  • Negro F, Farina D (2011) Decorrelation of cortical inputs and motoneuron output. J Neurophysiol 106(5):2688–2697

    Article  Google Scholar 

  • Nielsen BF, Ruud TS, Lines GT, Tveito A (2007) Optimal monodomain approximations of the bidomain equations. Appl Math Comput 184(2):276–290

    MathSciNet  MATH  Google Scholar 

  • Oudeman J, Mazzoli V, Marra MA, Nicolay K, Maas M, Verdonschot N, Sprengers AM, Nederveen AJ, Strijkers GJ, Froeling M (2016) A novel diffusion-tensor MRI approach for skeletal muscle fascicle length measurements. Physiol Rep 4(24):e13012. https://doi.org/10.14814/phy2.13012

    Article  Google Scholar 

  • Pullan AJ, Buist ML, Cheng LK (2005) Mathematically modelling the electrical activity of the heart: from cell to body surface and back again. World Scientific, Singapore. https://doi.org/10.1142/5859

    Book  MATH  Google Scholar 

  • Qu Z, Garfinkel A (1999) An advanced algorithm for solving partial differential equation in cardiac conduction. IEEE Trans Biomed Eng 46(9):1166–1168

    Article  Google Scholar 

  • Ramasamy E, Avci O, Dorow B, Chong SY, Gizzi L, Steidle G, Schick F, Röhrle O (2018) An efficient modelling-simulation-analysis workflow to investigate stump-socket interaction using patient-specific, three-dimensional, continuum-mechanical, finite element residual limb models. Front Bioeng Biotechnol 6:126

    Article  Google Scholar 

  • Röhrle O, Davidson JB, Pullan AJ (2012) A physiologically based, multi-scale model of skeletal muscle structure and function. Front Physiol 3:1–14

    Article  Google Scholar 

  • Röhrle O, Yavuz U, Klotz T, Negro F, Heidlauf T (2019) Multiscale modelling of the neuromuscular system: coupling neurophysiology and skeletal muscle mechanics. Wiley, Berlin

    Google Scholar 

  • Rush S, Abildskov J, McFee R (1963) Resistivity of body tissues at low frequencies. Circ Res 12(1):40–50

    Article  Google Scholar 

  • Saad Y, Schultz MH (1986) Gmres: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7(3):856–869. https://doi.org/10.1137/0907058

    Article  MathSciNet  MATH  Google Scholar 

  • Sbriccoli P, Sacchetti M, Felici F, Gizzi L, Lenti M, Scotto A, De Vito G (2009) Non-invasive assessment of muscle fiber conduction velocity during an incremental maximal cycling test. J Electromyogr Kinesiol 19(6):e380–e386

    Article  Google Scholar 

  • Shampine LF, Reichelt MW (1997) The matlab ode suite. SIAM J Sci Comput 18(1):1–22

    Article  MathSciNet  MATH  Google Scholar 

  • Shorten PR, O’Callaghan P, Davidson JB, Soboleva TK (2007) A mathematical model of fatigue in skeletal muscle force contraction. J Muscle Res Cell Motil 28(6):293–313

    Article  Google Scholar 

  • Sinha U, Yao L (2002) In vivo diffusion tensor imaging of human calf muscle. J Mag Reson Imaging 15(1):87–95. https://doi.org/10.1002/jmri.10035

    Article  Google Scholar 

  • Sundnes J, Lines GT, Tveito A (2005) An operator splitting method for solving the bidomain equations coupled to a volume conductor model for the torso. Math Biosci 194:233–248

    Article  MathSciNet  MATH  Google Scholar 

  • Sundnes J, Nielsen BF, Mardal K, Cai X, Lines GT, Tveito A (2006) On the computational complexity of the bidomain and the monodomain models of electrophysiology. Ann Biomed Eng 34(7):1088–1097. https://doi.org/10.1007/s10439-006-9082-z

    Article  Google Scholar 

  • Tung L (1978) A bi-domain model for describing ischemic myocardial dc potentials. PhD thesis, Massachusetts Institute of Technology

  • Whiteley JP (2006) An efficient numerical technique for the solution of the monodomain and bidomain equations. IEEE Trans Biomed Eng 53(11):2139–2147

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the Baden-Württemberg Stiftung as part of the DiHu project of the High Performance Computing II program and by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC 2075 – 390740016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Klotz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klotz, T., Gizzi, L., Yavuz, U.Ş. et al. Modelling the electrical activity of skeletal muscle tissue using a multi-domain approach. Biomech Model Mechanobiol 19, 335–349 (2020). https://doi.org/10.1007/s10237-019-01214-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-019-01214-5

Keywords

Navigation