Skip to main content
Log in

Electrical conductivity of skeletal muscle tissue: Experimental results from different musclesin vivo

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

For a quantitative EMG analysis reliable and unique values of the electrical conductivities of skeletal muscle tissuein vivo are indispensable. Literature values do not satisfy these criteria. In the paper experimental results of conductivity measurements (four-electrode technique) on musclesin vivo on which quantitative EMG experiments are also carried out are reported. Depending on the interelectrode distance (IED) in the four-electrode technique the results appear to be either frequency dependent (IED=0·5 mm) or frequency independent (IED=3·0 mm). The anisotropy value obtained with an IED of 0·5 mm is frequency dependentin the frequency range of EMG signals. Experimental results of different muscle types (white muscle, EDL rat and red muscle, soleus rat) appear to be significantly different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreassen, S. andRosenfalck, A. (1978) Recording from a single motor unit during strong effort,IEEE Trans.,BME-25, 501–508.

    Google Scholar 

  • Boyd, D. C., Lawrence, P. D. andBratty, P. J. A. (1978) On modeling the single motor unit action potential.,BME-25, 236–243.

    Google Scholar 

  • Burger, H. C. andvan Dongen, R. (1960) Specific electric resistance of body tissues,Phys. in Med. & Biol.,5, 431–447.

    Article  Google Scholar 

  • Clerc, L. (1976) Directional differences of impulse spread in trabecular muscle from mammalian heart.J. Physiol.,225, 335–346.

    Google Scholar 

  • Dimitrov, G. andDimitrova, N. (1974) Extracellular potential field of a single striated muscle fibre immersed in anisotropic volume conductor.Electromyogr. Clin. Neurophysiol. 14, 423–436.

    Google Scholar 

  • Epstein, B. R. andFoster, K. R. (1983) Anisotropy in the dielectric properties of skeletal muscle.Med. & Biol. Eng. & Comput.,21, 51–55.

    Google Scholar 

  • Falk, G. andFatt, P. (1964) Linear electrical properties of striated muscle fibres observed with intracellular electrodes.Proc. R. Soc. London. Ser. B. (Biol. Sci.),160, 69–123.

    Article  Google Scholar 

  • Gath, I. andStalberg, E. (1975) Frequency and time domain characteristics of single muscle fibre action potentials.Electroenceph. and Clin. Neurophysiol.,39, 371–376.

    Article  Google Scholar 

  • Geddes, L. A. andBaker, L. E. (1967) The specific resistance of biological material. A compendium of data for the biomedical engineer and physiologist.Med. & Biol. Eng.,5, 271–293.

    Google Scholar 

  • Gielen, F. L. H. andBoon, K. L. (1981) Measurements on the (complex) electrical conductivity and the anisotropy in skeletal muscle; a new electrode configuration. Proceedings of the Vth International Conference on Electrical Bio-Impedance, August 1981, Tokyo, Japan, 191–194.

  • Gielen, F. L. H. andBergveld, P. (1982) Comparison of electrode impedances of Pt, PtIr (10% Ir) and Ir-AIROF electrodes used in electrophysiological experiments.Med. & Biol. Eng. & Comput.,20, 77–83.

    Article  Google Scholar 

  • Gielen, F. L. H. andCruts, H. E. P. (1982) Anatomical structure and electrical conductivity of skeletal muscle tissue. Proceedings of World Congress on Medical Physics and Biomedical Engineering, Hamburg, 2.28.

  • Gielen, F. L. H. (1983) Electrical conductivity and histological structure of skeletal muscle. Thesis, Twente University of Technology, The Netherlands.

    Google Scholar 

  • Griep, P. A. M., Boon, K. L. andStegeman, D. F. (1978) A study of the motor unit action potential by means of computer simulation.Biol. Cybernetics,30, 221–230.

    Article  Google Scholar 

  • Griep, P. A. M., Gielen, F. L. H., Boom, H. B. K., Boon, K. L., Hoogstraten, L. L. W., Pool, C. H. andWallinga-de Jonge, W. (1982) Calculation and registration of the same motor unit action potential.Electroenceph. & Clin. Neurophysiol.,53, 388–404.

    Article  Google Scholar 

  • Lorente de No, R. (1947) A study of nerve physiology.Studies Rockefeller Inst. Med. Res.,132, 384–477.

    Google Scholar 

  • Mobley, B. A. andEidt, G. (1982) Transverse impedance of single frog skeletal msucle fibres.Biophys. J.,40, 51–59.

    Article  Google Scholar 

  • Plonsey, R. andHeppner, D. B. (1967) Considerations of quasistationarity in electrophysiological systems.Bull. Math. Biophys.,29, 657–664.

    Google Scholar 

  • Plonsey, R. (1969)Bio-electric phenomena. McGraw-Hill, New York.

    Google Scholar 

  • Plonsey, R. (1977) Action potential sources and their volume conductor fields.Proc. IEEE,65, 601–611.

    Article  Google Scholar 

  • Plonsey, R. andBarr, R. (1982) The four-electrode resistivity technique as applied to cardiac muscle.IEEE Trans.,BME-29, 541–546.

    Google Scholar 

  • Robbilard, P. N. andPoussart, D. (1979) Spatial resolution of four electrode array.,BME-26, 465–470.

    Google Scholar 

  • Rosenfalck, P. (1969) Intra- and extracellular potential fields of active nerve and muscle fibres.Acta Physiol. Scand., Suppl. 321, 1–168.

    Google Scholar 

  • Rush, S. (1962) Methods of measuring the resistivities of anisotropic conducting mediain situ.J. Res. Nat. Bur. Stand.,66C, 217–222.

    Google Scholar 

  • Rush, S., Abildskov, J. A. andMcFee, R. (1963) Resistivity of body tissues at low frequencies.Circ. Res.,12, 40–50.

    Google Scholar 

  • Schwan, H. P. (1968) Electrode polarization impedance and measurements in biological materials.Ann. NY Acad. Sci.,48, 191–209.

    Google Scholar 

  • van Oosterom, A., de Boer, R. W. andvan Dam, R. Th. (1979) Intramural resistivity of cardiac tissue.Med. & Biol. Eng. & Comput.,17, 337–343.

    Google Scholar 

  • Wallinga-de Jonge, W., Boom, H. B. K., Boon, K. L., Griep, P. A. M. andLammerée, G. C. (1980) Force development of fast and slow skeletal muscle at different muscle lengths.Am. J. Physiol.,239, C98-C104.

    Google Scholar 

  • Wani, A. M. andGuha, S. K. (1980) Synthesising of a motor unit potential based on the sequential firing of muscle fibres,Med. & Biol. Eng. & Comput.,18, 719–726.

    Article  Google Scholar 

  • Weidman, S. (1970) Electrical constants of trabecular muscle from mammalian heart.J. Physiol.,210, 1041–1054.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gielen, F.L.H., Wallinga-de Jonge, W. & Boon, K.L. Electrical conductivity of skeletal muscle tissue: Experimental results from different musclesin vivo . Med. Biol. Eng. Comput. 22, 569–577 (1984). https://doi.org/10.1007/BF02443872

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02443872

Key words

Navigation