Skip to main content
Log in

Red blood cell simulation using a coupled shell–fluid analysis purely based on the SPH method

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

In this paper, a novel 3D numerical method has been developed to simulate red blood cells (RBCs) based on the interaction between a shell-like solid structure and a fluid. RBC is assumed to be a thin shell encapsulating an internal fluid (cytoplasm) which is submerged in an external fluid (blood plasma). The approach is entirely based on the smoothed particle hydrodynamics (SPH) method for both fluid and the shell structure. Both cytoplasm and plasma are taken to be incompressible Newtonian fluid. As the kinematic assumptions for the shell, Reissner–Mindlin theory has been introduced into the formulation. Adopting a total Lagrangian (TL) formulation for the shell in the realm of small strains and finite deflection, the presented computational tool is capable of handling large displacements and rotations. As an application, the deformation of a single RBC while passing a stenosed capillary has been modeled. If the rheological behavior of the RBC changes, for example, due to some infection, it is reflected in its deformability when it passes through the microvessels. It can severely affect its proper function which is providing the oxygen and nutrient to the living cells. Hence, such numerical tools are useful in understanding and predicting the mechanical behavior of RBCs. Furthermore, the numerical simulation of stretching an RBC in the optical tweezers system is presented and the results are verified. To the best of authors’ knowledge, a computational tool purely based on the SPH method in the framework of shell–fluid interaction for RBCs simulation is not available in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adami S, Hu XY, Adams NA (2012) A generalized wall boundary condition for smoothed particle hydrodynamics. J Comput Phys 231:7057–7075

    Article  MathSciNet  Google Scholar 

  • Antoci C, Gallati M, Sibilla S (2007) Numerical simulation of fluidstructure interaction by SPH. Comput Struct 85:879–890

    Article  Google Scholar 

  • Aristodemo F, Federico I, Veltri P, Panizzo A (2010) Two-phase SPH modeling of advective diffusion processes. Environ Fluid Mech 10:451–470

    Article  Google Scholar 

  • Ay C, Lien CC, Wu MC (2014) Study on the Youngs modulus of red blood cells using atomic force microscope. Appl Mech Mater 627:197–201

    Article  Google Scholar 

  • Belytschko T, Guo Y, Kam Liu W, Ping Xiao S (2000) A unified stability analysis of meshless particle methods. Int J Numer Methods Eng 48:13591400

    Article  MathSciNet  MATH  Google Scholar 

  • Belytschko T, Liu WK, Moran B, Elkhodary K (2014) Nonlinear finite elements for continua and structures, Second edn. Wiley, New York

    MATH  Google Scholar 

  • Betsch P, Menzel A, Stein E (1998) On the parametrization of finite rotations in computational mechanics: A classification of concepts with application to smooth shells. Comput Methods Appl Mech Eng 155(3):273–305

    Article  MathSciNet  MATH  Google Scholar 

  • Cleary PW, Monaghan JJ (1999) Conduction modeling using smoothed particle hydrodynamics. J Comput Phys 148:227–264

    Article  MathSciNet  MATH  Google Scholar 

  • Cordasco D, Bagchi P (2013) Orbital drift of capsules and red blood cells in shear flow. Phys Fluids 25:091902

    Article  Google Scholar 

  • Dupire J, Socol M, Viallat A (2012) Full dynamics of a red blood cell in shear flow. PNAS 109(51):20808–20813

    Article  Google Scholar 

  • Fedosov D, Caswell B, Karniadakis G (2010) A multiscale red blood cell model with accurate mechanics, rheology, and dynamics. Biophys J 98(10):2215–25

    Article  Google Scholar 

  • Fedosov DA, Noguchi H, Gompper G (2014) Multiscale modeling of blood flow: from single cells to blood rheology. Biomech Model Mechanobiol. 13(2):239–58

    Article  Google Scholar 

  • Freund JB (2014) Numerical simulation of flowing blood cells. Annu Rev Fluid Mech 46:67–95

    Article  MathSciNet  MATH  Google Scholar 

  • Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Notices R Astron Soc 181:375

    Article  MATH  Google Scholar 

  • Gomez-Gesteira M, Rogers BD, Dalrymple RA, Crespo AJ (2010) State-of-the-art of classical SPH for free-surface flows. J Hydraul Res 48:6–27

    Article  Google Scholar 

  • Gray JP, Monaghan JJ, Swift RP (2001) SPH elastic dynamics. Comput Methods Appl Mech Eng 190:6641–6662

    Article  MATH  Google Scholar 

  • Hochmuth RM, Mohandas N, Blackshear PL (1997) Measurement of the elastic modulus for red cell membrane using a fluid mechanical technique. Biophys J. 13(8):747–762

    Article  Google Scholar 

  • Ju M, Ye SS, Namgung B, Cho S, Low HT, Leo HL, Kim S (2015) A review of numerical methods for red blood cell flow simulation. Comput Methods Biomech Biomed Eng 18(2):130–140

    Article  Google Scholar 

  • Keller SR, Skalak R (1982) Motion of a tank-treading ellipsoidal particle in a shear flow. J Fluid Mech 120:27–47

    Article  MATH  Google Scholar 

  • Kristof P, Benes B, Krivanek J, Stava O (2009) Hydraulic erosion using smoothed particle hydrodynamics. Comput Graphics Forums 28:219–228

    Article  Google Scholar 

  • Krüger T, Gross M, Raabe D, Varnik F (2013) Crossover from tumbling to tank-treading-like motion in dense simulated suspensions of red blood cells. Soft Matters 9:9008–9015

    Article  Google Scholar 

  • Lanotte L, Mauer J, Mendez S, Fedosov DA, Fromental J-M, Claveria V, Nicoud F, Gompper G, Abkarian M (2016) Red cells dynamic morphologies govern blood shear thinning under microcirculatory flow conditions. PNAS 13(47):13289–13294

    Article  Google Scholar 

  • Li S, Liu WK (2002) Mesh-free and particle methods and their applications. Appl. Mech. 55(1):1–34

    Article  MathSciNet  Google Scholar 

  • Libersky LD, Petschek AG, Carney TC, Hipp JR, Allahdadi FA (1993) High strain Lagrangian hydrodynamics: a three-dimensional SPH code for dynamic material response. J Comput Phys 109(1):67–75

    Article  MATH  Google Scholar 

  • Lin J, Naceur H, Coutellier D, Laksimi A (2014) Efficient meshless SPH method for the numerical modeling of thick shell structures undergoing large deformations. Int J Nonlinear Mech 65:1–13

    Article  Google Scholar 

  • Lucy LB (1977) Numerical approach to the testing of the fission hypothesis. Astron J 82:1013

    Article  Google Scholar 

  • Maurel B, Combescure A (2008) An SPH shell formulation for plasticity and fracture analysis in explicit dynamics. Numer Method Eng 76(7):949–9715

    Article  MathSciNet  MATH  Google Scholar 

  • Mills J, Qie L, Dao M, Lim C, Suresh S (2004) Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers. Mech Chem Biosyst 1(3):169–180

    Google Scholar 

  • Monaghan JJ (1992) Smoothed particle hydrodynamics. Annu Rev Astron Astrophys 3:543–574

    Article  Google Scholar 

  • Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput Phys 110(2):399–406

    Article  MathSciNet  MATH  Google Scholar 

  • Monaghan JJ (2000) SPH without a Tensile Instability. J Comput Phys 159:290–311

    Article  MATH  Google Scholar 

  • Monaghan JJ (2005) Smoothed particle hydrodynamics. Rep Progress Phys 68:1703–1759

    Article  MathSciNet  MATH  Google Scholar 

  • Monaghan JJ, Gingold RA (1983) Shock simulation by the particle method SPH. J Comput Phys 52(2):374–389

    Article  MATH  Google Scholar 

  • Nayanajith H, Gallage P, Saha SC, Sauret E, Flower R, Senadeera W, YuanTong G (2016) SPH-DEM approach to numerically simulate the deformation of three-dimensional RBCs in non-uniform capillaries. BioMed Eng Online 15(2):350–370

    Google Scholar 

  • Owen B, Bojdo N, Jivkov A, Keavney B, Revell A (2018) Structural modelling of the cardiovascular system. Biomech Model Mechanobiol. https://doi.org/10.1007/s10237-018-1024-9

  • Pozrikidis C (2001) Effect of membrane bending stiffness on the deformation of capsules in simple shear flow. J Fluid Mech 440:269–291

    Article  MATH  Google Scholar 

  • Reddy JN (2006) Theory and analysis of elastic plates and shells, Second edn. CRC Press, Boca Raton

    Google Scholar 

  • Skalak R, Tozeren A, Zarda RP, Chien S (1973) Strain energy function of red blood cell membranes. Biophys J 13(3):245–264

    Article  Google Scholar 

  • Soleimani M, Wriggers P (2016) Numerical simulation and experimental validation of biofilm in a multi-physics framework using an SPH based method. Comput Mech 58(4):619–633

    Article  MathSciNet  Google Scholar 

  • Suzuki Y, Tateishi N, Soutani M, Maeda N (1996) Deformation of erythrocytes in microvessels and glass capillaries: effects of erythrocyte deformability. Microcirculation 3(1):49–57

    Article  Google Scholar 

  • Tartakovsky AM, Meakin P, Scheibe TD (2007) Simulations of reactive transport and precipitation with smoothed particle hydrodynamics. J Comput Phys 222:654–672

    Article  MathSciNet  MATH  Google Scholar 

  • Tenghu W, Feng JJ (2013) Simulation of malaria-infected red blood cells in microfluidic channels: passage and blockage. Biomicrofluidics 7:044115

    Article  Google Scholar 

  • Tomaiuolo G (2014) Biomechanical properties of red blood cells in health and disease towards microfluidics. Biomicrofluidics 8(5):051501

    Article  Google Scholar 

  • Tran-Son-Tay R, Sutera SP, Zahalak GI, Rao PR (1987) Membrane stress and internal pressure in a red blood cell freely suspended in a shear flow. Biophys J 51(6):915–924

    Article  Google Scholar 

  • Vahidkhah K, Fatouraee N (2012) Numerical simulation of red blood cell behaviour in a stenosed arteroile using the immersed boundary-lattice Boltzmann method. Int J Numer Method Biomed Eng 28:239–256

    Article  MATH  Google Scholar 

  • Vahidkhah K, Balogh P, Bagchi P (2016) Flow of red blood cells in stenosed microvessels. Sci Rep 6:281–94

    Article  Google Scholar 

  • Valizadeh A, Monaghan JJ (2015) A study of solid wall models for weakly compressible SPH. J Comput Phys 300:5–19

    Article  MathSciNet  MATH  Google Scholar 

  • Vignjevic R, Campbell J, Liberskyb L (2000) A treatment of zero-energy modes in the smoothed particle hydrodynamics method. Comput Methods Appl Mech Eng 184(1):67–85

    Article  MathSciNet  MATH  Google Scholar 

  • Vignjevic R, Campbell J (2009) Review of development of the smooth particle hydrodynamics (SPH) method. In: Predictive modeling of dynamic processes, pp 367–396

  • Wanner GW (1973) Modelling the mechanical behavior of red blood cells. Biorheology 10(2):229–38

    Article  Google Scholar 

  • Wriggers P (2008) Non-linear finite element method. Springer, Heidelberg, pp 142–148

    Google Scholar 

  • Wriggers P, Simo JC (1990) A general procedure for the direct computation of turning and bifurcation points. Int J Numer Methods Eng l 30:155176

    MATH  Google Scholar 

  • Yazdani A, Baghchi P (2012) Three dimensional numerical simulation of vesicle dynamics using a front tracking method. Phys Rev E 85:056308

    Article  Google Scholar 

  • Zarda PR, Chien S, Skalak R (1997) Elastic deformations of red blood cells. J Biomech 10:211–221

    Article  Google Scholar 

  • Zhong-can O-Y, Helfrich W (1989) Bending energy of vesicle membranes: general expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders. Phys. Rev. A 39:5280–5288

    Article  Google Scholar 

Download references

Acknowledgements

The authors sincerely acknowledge the financial support of this research by the state of Lower Saxony, Germany, within the program ”wissenschaftsallianz.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meisam Soleimani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soleimani, M., Sahraee, S. & Wriggers, P. Red blood cell simulation using a coupled shell–fluid analysis purely based on the SPH method. Biomech Model Mechanobiol 18, 347–359 (2019). https://doi.org/10.1007/s10237-018-1085-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-018-1085-9

Keywords

Navigation