Biomechanics and Modeling in Mechanobiology

, Volume 13, Issue 2, pp 463–476 | Cite as

Cellular blebs: pressure-driven, axisymmetric, membrane protrusions

  • Thomas E. WoolleyEmail author
  • Eamonn A. Gaffney
  • James M. Oliver
  • Ruth E. Baker
  • Sarah L. Waters
  • Alain Goriely
Original Paper


Blebs are cellular protrusions that are used by cells for multiple purposes including locomotion. A mechanical model for the problem of pressure-driven blebs based on force and moment balances of an axisymmetric shell model is proposed. The formation of a bleb is initiated by weakening the shell over a small region, and the deformation of the cellular membrane from the cortex is obtained during inflation. However, simply weakening the shell leads to an area increase of more than 4 %, which is physically unrealistic. Thus, the model is extended to include a reconfiguration process that allows large blebs to form with small increases in area. It is observed that both geometric and biomechanical constraints are important in this process. In particular, it is shown that although blebs are driven by a pressure difference across the cellular membrane, it is not the limiting factor in determining bleb size.


Bleb Shell model Force balance Membrane growth Cell mechanics 



This publication is based on work supported by Award No. KUK-C1-013-04, made by King Abdullah University of Science and Technology (KAUST). AG is a Wolfson Royal Society Merit Holder and acknowledges support from a Reintegration Grant under EC Framework VII.


  1. Ashby MF, Gibson LJ, Wegst U, Olive R (1995) The mechanical properties of natural materials. I. Material property charts. Proc R Soc A 450(1938):123–140CrossRefGoogle Scholar
  2. Blaser H, Reichman-Fried M, Castanon I, Dumstrei K, Marlow FL, Kawakami K, Solnica-Krezel L, Heisenberg CP, Raz E (2006) Migration of zebrafish primordial germ cells: a role for myosin contraction and cytoplasmic flow. Dev Cell 11(5):613–627CrossRefGoogle Scholar
  3. Boucrot E, Kirchhausen T (2007) Endosomal recycling controls plasma membrane area during mitosis. Proc Natl Acad Sci 104(19):7939CrossRefGoogle Scholar
  4. Charras GT (2008) A short history of blebbing. J Microsc 231(3):466–478MathSciNetCrossRefGoogle Scholar
  5. Charras G, Paluch E (2008) Blebs lead the way: how to migrate without lamellipodia. Nat Rev Mol Cell Biol 9(9):730–736CrossRefGoogle Scholar
  6. Charras GT, Yarrow JC, Horton MA, Mahadevan L, Mitchison TJ (2005) Non-equilibration of hydrostatic pressure in blebbing cells. Nature 435(7040):365–369CrossRefGoogle Scholar
  7. Charras GT, Coughlin M, Mitchison TJ, Mahadevan L (2008) Life and times of a cellular bleb. Biophys J 94(5):1836–1853CrossRefGoogle Scholar
  8. Collins-Hooper H, Woolley TE, Dyson L, Patel A, Potter P, Baker RE, Gaffney EA, Maini PK, Dash PR, Patel K (2012) Age-related changes in speed and mechanism of adult skeletal muscle stem cell migration. Stem Cells 30(6):1182–1195CrossRefGoogle Scholar
  9. Cunningham CC (1995) Actin polymerization and intracellular solvent flow in cell surface blebbing. J Cell Biol 129(6):1589–1599CrossRefGoogle Scholar
  10. Dai J, Sheetz MP (1999) Membrane tether formation from blebbing cells. Biophys J 77(6):3363–3370CrossRefGoogle Scholar
  11. Evans EA (1983) Bending elastic modulus of red blood cell membrane derived from buckling instability in micropipet aspiration tests. Biophys J 43(1):27–30CrossRefGoogle Scholar
  12. Evans EA, Skalak R (1980) Mechanics and thermodynamics of biomembranes. CRC Press, Boca Raton, FLGoogle Scholar
  13. Fackler OT, Grosse R (2008) Cell motility through plasma membrane blebbing. J Cell Biol 181(6):879CrossRefGoogle Scholar
  14. Goriely A, Tabor M (2003a) Biomechanical models of hyphal growth in actinomycetes. J Theor Biol 222(2):211–218MathSciNetCrossRefGoogle Scholar
  15. Goriely A, Tabor M (2003b) Self-similar tip growth in filamentary organisms. Phys Rev Lett 90(10):108101CrossRefGoogle Scholar
  16. Goriely A, Tabor M (2006) Estimates of biomechanical forces in Magnaporthe grisea. Mycol Res 110(Pt 7):755–759CrossRefGoogle Scholar
  17. Goriely A, Károlyi G, Tabor M (2005) Growth induced curve dynamics for filamentary micro-organisms. J Math Biol 51(3):355–366zbMATHMathSciNetCrossRefGoogle Scholar
  18. Hallett MB, Dewitt S (2007) Ironing out the wrinkles of neutrophil phagocytosis. Trends Cell Biol 17(5):209–214CrossRefGoogle Scholar
  19. Hallett MB, von Ruhland CJ, Dewitt S (2008) Chemotaxis and the cell surface-area problem. Nat Rev Mol Cell Biol 9(8):662–662CrossRefGoogle Scholar
  20. Hickson GRX, Echard A, O’Farrell PH (2006) Rho-kinase controls cell shape changes during cytokinesis. Curr Biol 16(4):359–370CrossRefGoogle Scholar
  21. Hu J (2009) Mathematical modeling and analysis of in vitro Actin filament dynamics and cell blebbing. PhD thesis, University of MinnesotaGoogle Scholar
  22. Keller H, Eggli P (1998) Protrusive activity, cytoplasmic compartmentalization, and restriction rings in locomoting blebbing Walker carcinosarcoma cells are related to detachment of cortical actin from the plasma membrane. Cell Motil Cytoskelet 41(2):181–193 Google Scholar
  23. Keller HU, Bebie H (1996) Protrusive activity quantitatively determines the rate and direction of cell locomotion. Cell Motil Cytoskelet 33(4):241–251CrossRefGoogle Scholar
  24. Lew DJ (2003) The morphogenesis checkpoint: how yeast cells watch their figures. Curr Opin Cell Biol 15(6):648–653CrossRefGoogle Scholar
  25. Lim FY, Chiam KH, Mahadevan L (2012) The size, shape, and dynamics of cellular blebs. Bull Am Phys Soc 55:1–6Google Scholar
  26. Maugis B, Brugués J, Nassoy P, Guillen N, Sens P, Amblard F (2010) Dynamic instability of the intracellular pressure drives bleb-based motility. J Cell Sci 123(22):3884–3892CrossRefGoogle Scholar
  27. Mills JC, Stone NL, Erhardt J, Pittman RN (1998) Apoptotic membrane blebbing is regulated by myosin light chain phosphorylation. J Cell Biol 140(3):627–636CrossRefGoogle Scholar
  28. Nichol JA, Hutter OF (1996) Tensile strength and dilatational elasticity of giant sarcolemmal vesicles shed from rabbit muscle. J Phys 493:187Google Scholar
  29. Norman LL, Brugs J, Sengupta K, Sens P, Aranda-Espinoza H (2010) Cell blebbing and membrane area homeostasis in spreading and retracting cells. Biophys J 99(6):1726–1733CrossRefGoogle Scholar
  30. Otto A, Collins-Hooper H, Patel A, Dash PR, Patel K (2011) Adult skeletal muscle stem cell migration is mediated by a blebbing/amoeboid mechanism. Rejuv Res 14(3):249–260CrossRefGoogle Scholar
  31. Paluch E, Sykes C, Prost J, Bornens M (2006) Dynamic modes of the cortical actomyosin gel during cell locomotion and division. Trends Cell Biol 16(1):5–10CrossRefGoogle Scholar
  32. Pozrikidis C (2001) Effect of membrane bending stiffness on the deformation of capsules in simple shear flow. J Fluid Mech 440:269–291zbMATHCrossRefGoogle Scholar
  33. Pressley A (2010) Elementary differential geometry. Springer, New YorkzbMATHCrossRefGoogle Scholar
  34. Robertson AMG, Bird CC, Waddell AW, Currie AR (1978) Morphological aspects of glucocorticoid-induced cell death in human lymphoblastoid cells. J Pathol 126(3):181–187CrossRefGoogle Scholar
  35. Russell SW, Rosenau W, Lee JC (1972) Cytolysis induced by human lymphotoxin: cinemicrographic and electron microscopic observations. Am J Pathol 69(1):103Google Scholar
  36. Sahai E, Marshall CJ (2003) Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nat Cell Biol 5(8):711–719CrossRefGoogle Scholar
  37. Schütz K, Keller H (1998) Protrusion, contraction and segregation of membrane components associated with passive deformation and shape recovery of Walker carcinosarcoma cells. Eur J Cell Biol 77(2):100–110CrossRefGoogle Scholar
  38. Sheetz MP, Sable JE, Döbereiner HG (2006) Continuous membrane-cytoskeleton adhesion requires continuous accommodation to lipid and cytoskeleton dynamics. Annu Rev Biophys Biomol Struct 35:417–434CrossRefGoogle Scholar
  39. Skalak R, Tozeren A, Zarda RP, Chien S (1973) Strain energy function of red blood cell membranes. Biophys J 13(3):245–264CrossRefGoogle Scholar
  40. Spangler EJ, Harvey CW, Revalee JD, Sunil Kumar PB, Laradji M (2011) Computer simulation of cytoskeleton-induced blebbing in lipid membranes. Phys Rev E 84:051906CrossRefGoogle Scholar
  41. Strychalski W, Guy RD (2012) A computational model of bleb formation. Math Med Biol 30:115–130Google Scholar
  42. Tinevez JY, Schulze U, Salbreux G, Roensch J, Joanny JF, Paluch E (2009) Role of cortical tension in bleb growth. Proc Natl Acad Sci 106(44):18581–18586CrossRefGoogle Scholar
  43. Tongen A, Goriely A, Tabor M (2006) Biomechanical model for appressorial design in Magnaporthe grisea. J Theor Biol 240(1):1–8MathSciNetCrossRefGoogle Scholar
  44. Young J, Mitran S (2010) A numerical model of cellular blebbing: a volume-conserving, fluid-structure interaction model of the entire cell. J Biomech 43:210–220CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Thomas E. Woolley
    • 1
    Email author
  • Eamonn A. Gaffney
    • 1
  • James M. Oliver
    • 1
  • Ruth E. Baker
    • 1
  • Sarah L. Waters
    • 1
  • Alain Goriely
    • 1
  1. 1.Mathematical InstituteUniversity of OxfordOxfordUK

Personalised recommendations