Skip to main content

Advertisement

Log in

Modeling electrical power absorption and thermally-induced biological tissue damage

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

This work develops a model for thermally induced damage from high current flow through biological tissue. Using the first law of thermodynamics, the balance of energy produced by the current and the energy absorbed by the tissue are investigated. The tissue damage is correlated with an evolution law that is activated upon exceeding a temperature threshold. As an example, the Fung material model is used. For certain parameter choices, the Fung material law has the ability to absorb relatively significant amounts of energy, due to its inherent exponential response character, thus, to some extent, mitigating possible tissue damage. Numerical examples are provided to illustrate the model’s behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The Second Piola-Kirchhoff stress is related to the Cauchy stress (\({{\varvec{T}}}\)) via \({{\varvec{T}}}=\frac{1}{J}{{\varvec{F}}}\cdot {{\varvec{S}}}\cdot {{\varvec{F}}}^T\). Although we will employ referential formulations in the analysis to follow, we note that in the current configuration we have \(\displaystyle {\rho \dot{w}-{{\varvec{T}}}:\nabla _x\dot{{{\varvec{v}}}}+\nabla _x \cdot {{\varvec{q}}}-Z=0}\), where \({{\varvec{T}}}\) is the Cauchy stress, \({{\varvec{v}}}\) is the material velocity, \(\rho \) is the density, and \({{\varvec{q}}}\) is the heat flux.

    Fig. 1
    figure 1

    Electrical flow through bio-tissue

  2. In the case of isotropy, Hooke’s law can be written in terms of the bulk \(\kappa \) and shear moduli \(\mu \) as \({\varvec{\sigma }}={{\varvec{I}}}\!{{\varvec{E}}}:{\varvec{\epsilon }}=3\kappa \frac{tr({{\varvec{\epsilon }}})}{3}\mathbf{1}+2\mu {{\varvec{\epsilon }}}^{\prime }\), where \({{\varvec{\epsilon }}}^{\prime }={\varvec{\epsilon }}-\frac{tr({{\varvec{\epsilon }}})}{3}\mathbf{1}\).

  3. For further details on these types of phenomenological (damage) formulations, the interested reader is referred to the seminal work of Kachanov (1986).

  4. For an in depth mathematical analysis of coupled thermal, diffusive and chemical effects in solids, in particular instabilities, we refer the reader to Markenscoff (2001a, b, 2003).

References

  • Adukauskiene D, Vizgirdaite V, Mazeikiene S (2007) Electrical injuries. Medicina (Kaunas) 43(3):259–266

    Google Scholar 

  • Chen MQ, Wong J, Kuhl E, Giovangrandi L, Kovacs GTA (2011) Characterization of electrophysiological conduction in cardiomyocyte co-cultures using co-occurrence analysis. Comp Meth Biomech Biomed Eng. doi:10.1080/10255842.2011.615310

  • Cooper MA (1995) Emergent care of lightning and electrical injuries. Semin Neurol 15(3):268–78

    Article  Google Scholar 

  • Cushing T (2011) Electrical injuries in emergency medicine. Medscape Reference. Web. 29, September 2011

  • Dal H, Göktepe S, Kaliske M, Kuhl E (2012) A fully implicit finite element method for bidomain models of cardiac electrophysiology. Comp Meth Biomech Biomed Eng 15:645–656

    Article  Google Scholar 

  • Dal H, Göktepe S, Kaliske M, Kuhl E (2013) A fully implicit finite element method for bidomain models of cardiac electromechanics. Comp Meth Appl Mech Eng 253:323–336

    Article  Google Scholar 

  • Demkowicz (2006) Computing with hp-adaptive finite elements. I. One- and two- dimensional elliptic and Maxwell problems. CRC Press, Taylor and Francis

    Book  Google Scholar 

  • Demkowicz L, Kurtz J, Pardo D, Paszynski M, Rachowicz W, Zdunek A (2007) Computing with hp-adaptive finite elements, vol 2: frontiers: three dimensional elliptic and Maxwell problems with applications. CRC Press, Taylor and Francis

    Google Scholar 

  • Fontanarosa PB (1993) Electrical shock and lightning strike. Ann Emerg Med 22(2 Pt 2):378–87

    Article  Google Scholar 

  • Fung YC (1967) Elasticity of soft tissues in simple elongation. Am J Physiol 28:1532–1544

    Google Scholar 

  • Fung YC (1973) Biorheology of soft tissues. Biorheology 10:139–155

    Google Scholar 

  • Fung YC (1983) On the foundations of biomechanics. ASME J Appl Mech 50:1003–1009

    Article  Google Scholar 

  • Göktepe S, Kuhl E (2010) Electromechanics of the heart: a unified approach to the strongly coupled excitation–contraction problem. Comp Mech 45:227–243

    Article  MATH  Google Scholar 

  • Hashin Z (1983) Analysis of composite materials: a survey. ASME J Appl Mech 50:481–505

    Article  MATH  Google Scholar 

  • Holzapfel GA (2001) Biomechanics of soft tissue. In: Lemaitre J (ed) The handbook of materials behavior models, vol III, Multiphysics behaviors, Chapter 10, Composite media, Biomaterials. Academic Press, Boston, pp 1049–1063

  • Holzapfel GA, Ogden RW (2009) Biomechanical modeling at the molecular, cellular and tissue levels. Springer, Berlin

    Book  Google Scholar 

  • Huet C (1982) Universal conditions for assimilation of a heterogeneous material to an effective medium. Mech Res Commun 9(3):165–170

    Article  MATH  Google Scholar 

  • Huet C (1984) On the definition and experimental determination of effective constitutive equations for heterogeneous materials. Mech Res Commun 11(3):195–200

    Article  MathSciNet  Google Scholar 

  • Humphrey JD (2002) Cardiovascular solid mechanics. Cells, tissues, and organs. Springer, New York

    Book  Google Scholar 

  • Humphrey JD (2003) Continuum biomechanics of soft biological tissues. Proc R Soc 459(2029):3–46

    Article  MATH  MathSciNet  Google Scholar 

  • Hurtado D, Kuhl E (2012) Computational modeling of electrocardiograms: Repolarization and T-wave polarity in the human heart. Comp Meth Biomech Biomed Eng. doi:10.1080/10255842.2012.729582

  • Jikov VV, Kozlov SM, Olenik OA (1994) Homogenization of differential operators and integral functionals. Springer, Berlin

    Book  Google Scholar 

  • Kachanov LM (1986) Introduction to continuum damage mechanics. Martinus Nijoff, Dordricht

    Book  MATH  Google Scholar 

  • Kachanov M (1993) Elastic solids with many cracks and related problems. Advance applied mechanics, vol 30. Academic Press, New York

    Google Scholar 

  • Kachanov M, Tsukrov I, Shafiro B (1994) Effective moduli of solids with cavities of various shapes. Appl Mech Rev 47:S151–S174

    Article  Google Scholar 

  • Kachanov M, Sevostianov I (2005) On the quantitative characterization of microstructures and effective properties. Int J Solids Struct 42:309–336

    Article  MATH  Google Scholar 

  • Kotikanyadanam M, Göktepe S, Kuhl E (2010) Computational modeling of electrocardiograms: a finite element approach towards cardiac excitation. Int J Num Meth Biomed Eng 26:524–533

    MATH  Google Scholar 

  • Lederer W, Kroesen G (2005) Emergency treatment of injuries following lightning and electrical accidents. Anaesthesist 54(11):1120–9

    Article  Google Scholar 

  • Markenscoff X (2001a) Diffusion induced instability. Q Appl Mech LIX(1):147–151

    MathSciNet  Google Scholar 

  • Markenscoff X (2001b) Instabilities of a thermo-mechano-chemical system. Q Appl Mech LIX(3):471–477

    MathSciNet  Google Scholar 

  • Markenscoff X (2003) On conditions of “negative creep” in amorphous solids. Mech Mater 35(3–6):553–557

    Article  Google Scholar 

  • Markov KZ (2000) Elementary micromechanics of heterogeneous media. In: Markov KZ, Preziozi L (eds) Heterogeneous media: micromechanics modeling methods and simulations. Birkhauser, Boston, pp 1–162

    Chapter  Google Scholar 

  • Maxwell JC (1867) On the dynamical theory of gases. Philos Trans Soc Lond. 157:49

    Article  Google Scholar 

  • Maxwell JC (1873) A treatise on electricity and magnetism, 3rd edn. Clarendon Press, Oxford

  • Mura T (1993) Micromechanics of defects in solids, 2nd edn. Kluwer, Berlin

    Google Scholar 

  • Nemat-Nasser S, Hori M (1999) Micromechanics: overall properties of heterogeneous solids, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Rayleigh JW (1892) On the influence of obstacles arranged in rectangular order upon properties of a medium. Philos Mag 32:481–491

    Article  Google Scholar 

  • Sevostianov I, Gorbatikh L, Kachanov M (2001) Recovery of information of porous/microcracked materials from the effective elastic/conductive properties. Mater Sci Eng A 318:1–14

    Article  Google Scholar 

  • Sevostianov I, Kachanov M (2008) Connections between elastic and conductive properties of heterogeneous materials. Adv Appl Mech 42:69–253

    Article  Google Scholar 

  • Torquato S (2002) Random heterogeneous materials: microstructure and macroscopic properties. Springer, New York

    Book  Google Scholar 

  • Wong J, Göktepe S, Kuhl E (2011) Computational modeling of electrochemical coupling: a novel finite element approach towards ionic models for cardiac electrophysiology. Comp Meth Appl Mech Eng 200:3139–3158

    Article  MATH  Google Scholar 

  • Xu X, Zhu W, Wu Y (1999) Experience of the treatment of severe electric burns on special parts of the body. Ann NY Acad Sci 888:121–130

    Article  Google Scholar 

  • Zohdi TI, Wriggers P (2008) Introduction to computational micromechanics. Springer, Berlin

    MATH  Google Scholar 

  • Zohdi TI (2010) Simulation of coupled microscale multiphysical-fields in particulate-doped dielectrics with staggered adaptive FDTD. Comput Methods Appl Mech Eng 199:79–101

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. I. Zohdi.

Appendix: Joule heating

Appendix: Joule heating

Joule heating can be explicitly identified by considering Faraday’s Law

$$\begin{aligned} \nabla \times {\varvec{\mathcal{E }}}=-\frac{\partial {\varvec{\mathcal{B }}}}{\partial t} \end{aligned}$$
(7.1)

and Ampere’s Law

$$\begin{aligned} \nabla \times {\varvec{\mathcal{H }}}=\frac{\partial {\varvec{\mathcal{D }}}}{\partial t}+{\varvec{\mathcal{J }}}\end{aligned}$$
(7.2)

where we recall that \({\varvec{\mathcal{E }}}\) is the electric field, \({\varvec{\mathcal{D }}}\) is the electric field flux, \({\varvec{\mathcal{J }}}\) is the electric current, \({\varvec{\mathcal{H }}}\) is the magnetic field, and \({\varvec{\mathcal{B }}}\) is the magnetic field flux. Joule heating can be motivated by forming the inner product of the magnetic field with Faraday’s law and the inner product of the electric field with Ampere’s law and forming the difference to yield

$$\begin{aligned} \underbrace{{\varvec{\mathcal{E }}}\cdot (\nabla \times {\varvec{\mathcal{H }}})-{\varvec{\mathcal{H }}}\cdot (\nabla \times {\varvec{\mathcal{E }}})}_{-\nabla \cdot ({\varvec{\mathcal{E }}}\times {\varvec{\mathcal{H }}})=-\nabla \cdot {{\varvec{S}}}} \!=\!{\varvec{\mathcal{E }}}\cdot {\varvec{\mathcal{J }}}\!+\!\underbrace{{\varvec{\mathcal{E }}}\cdot \frac{\partial {\varvec{\mathcal{D }}}}{\partial t}\!+\!{\varvec{\mathcal{H }}}\cdot \frac{\partial {\varvec{\mathcal{B }}}}{\partial t}}_{=\frac{\partial \mathcal{W}}{\partial t}},\nonumber \\ \end{aligned}$$
(7.3)

where \(\mathcal{W}=\frac{1}{2}({\varvec{\mathcal{E }}}\cdot {\varvec{\mathcal{D }}}+{\varvec{\mathcal{H }}}\cdot {\varvec{\mathcal{B }}})\) is the electromagnetic energy and where \({\varvec{\mathcal{S }}}={\varvec{\mathcal{E }}}\times {\varvec{\mathcal{H }}}\) is the Poynting vector. Thus,

$$\begin{aligned} \frac{\partial \mathcal{W}}{\partial t}+\nabla \cdot {\varvec{\mathcal{S }}}=-{\varvec{\mathcal{J }}}\cdot {\varvec{\mathcal{E }}}\end{aligned}$$
(7.4)

Equation 7.4 is usually referred to as Poynting’s theorem and can be interpreted as stating that the rate of change of electromagnetic energy within a volume, plus the energy flowing out through the material, is equal to the negative of the total work done by the fields on the sources and electrical conduction. We consider the absorbed energy that is available for heating to be proportional to the energy associated with current flow (\({\varvec{\mathcal{J }}}\cdot {\varvec{\mathcal{E }}}\)) in Eq. 7.4.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zohdi, T.I. Modeling electrical power absorption and thermally-induced biological tissue damage. Biomech Model Mechanobiol 13, 115–121 (2014). https://doi.org/10.1007/s10237-013-0489-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-013-0489-9

Keywords

Navigation