Skip to main content

Advertisement

Log in

In vitro investigation and biomechanical modeling of the effects of PLF-68 on osteoarthritis in a three-dimensional model

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

In this study, it was hypothesized that Pluronic F-68 (PLF-68) increases matrix synthesis of osteoarthritis (OA) chondrocytes in addition to its well-documented cell survival effect. To test this hypothesis, rat articular chondrocytes were embedded in agarose discs and were exposed to 5-azacytidine (Aza-C) to induce OA-like alterations. Chondrocytes were then treated with PLF-68 (8 and 12 mg/ml) for 10 days. Aza-C-exposed and PLF-68-untreated chondrocytes and Aza-C-unexposed and PLF-68-untreated chondrocytes were used as negative and positive control groups, respectively. Dynamic hydrostatic pressure (max 0.2 MPa, 0.1 Hz) was applied to discs for 30 min/day (5 days/week). Cell viability, collagen and proteoglycan deposition in discs were determined. Unconfined compression stress relaxation tests were performed to determine peak stress and material parameters of discs—namely spring constants (k 1 and k 2), damping coefficient (η), instantaneous modulus (E 0) and relaxed modulus (E ) using Kelvin model to evaluate the functional coherence of the matrix. PLF-68 treatment significantly increased the collagen deposition in discs and viability of OA-like chondrocytes. A dose-dependent increase was also observed for elastic stiffness parameters (k 1, k 2, E 0 and E ). Same positive effect of PLF-68 was not observed for proteoglycan deposition. However, dose-dependent increase in η suggests that PLF-68 treatment resulted with the deposition of functional matrix. This is the first study which reports that PLF-68 has also positive effect on collagen synthesis of OA cells. As a conclusion, our results suggest that PLF-68 has a potential for recovery from OA-like alterations, which should be further analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baars DC, Rundell SA, Haut RC (2006) Treatment with the non-ionic surfactant poloxamer P188 reduces DNA fragmentation in cells from bovine chondral explants exposed to injurious unconfined compression. Biomech Model Mechanobiol 5(2–3): 133–139. doi:10.1007/s10237-006-0024-3

    Article  Google Scholar 

  • Bader DL, Kempson GE, Egan J, Gilbey W, Barrett AJ (1992) The effects of selective matrix degradation on the short-term compressive properties of adult human articular cartilage. Biochim Biophys Acta 1116(2): 147–154

    Google Scholar 

  • Benya PD, Shaffer JD (1982) Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30(1): 215–224

    Article  Google Scholar 

  • Blanco FJ, Guitian R, Vázquez-Martul E, de Toro FJ, Galdo F (1998) Osteoarthritis chondrocytes die by apoptosis. A possible pathway for osteoarthritis pathology. Arthritis Rheum 41(2): 284–289

    Article  Google Scholar 

  • Bonassar LJ, Grodzinsky AJ, Frank EH, Davila SG, Bhaktav NR, Trippel SB (2001) The effect of dynamic compression on the response of articular cartilage to insulin-like growth factor-I. J Orthop Res 19(1): 11–17

    Article  Google Scholar 

  • Farndale RW, Buttle DJ, Barrett AJ (1986) Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta 883(2): 173–177. doi:10.1016/0304-4165(86)90306-5

    Google Scholar 

  • Fung YC (1993) Biomechanics: mechanical properties of living tissues. Springer-Verlag, New York, p p 41

    Google Scholar 

  • Gigout A, Buschmann MD, Jolicoeur M (2009) Chondrocytes cultured in stirred suspension with serum-free medium containing pluronic-68 aggregate and proliferate while maintaining their differentiated phenotype. Tissue Eng Part A 15(8): 2237–2248. doi:10.1089/ten.tea.2008.0256

    Article  Google Scholar 

  • Hannig J, Zhang D, Canaday DJ, Beckett MA, Astumian RD, Weichselbaum RR, Lee RC (2000) Surfactant sealing of membranes permeabilized by ionizing radiation. Radiat Res 154(2): 171–177

    Article  Google Scholar 

  • Hansen U, Schünke M, Domm C, Ioannidis N, Hassenpflug J, Gehrke T, Kurz B (2001) Combination of reduced oxygen tension and intermittent hydrostatic pressure: a useful tool in articular cartilage tissue engineering. J Biomech 34(7): 941–949

    Article  Google Scholar 

  • Hellung-Larsen P, Assaad F, Pankratova S, Saietz BL, Skovgaard LT (2000) Effects of Pluronic F-68 on Tetrahymena cells: protection against chemical and physical stress and prolongation of survival under toxic conditions. J Biotechnol 76(2–3): 185–195

    Article  Google Scholar 

  • Hidvegi NC, Sales KM, Izadi D, Ong J, Kellam P, Eastwood D, Butler PE (2006) A low temperature method of isolating normal human articular chondrocytes. Osteoarthr Cartil 14(1): 89–93. doi:10.1016/j.joca.2005.08.007

    Article  Google Scholar 

  • Ho ML, Chang JK, Wu SC, Chung YH, Chen CH, Hung SH, Wang GJ (2006) A novel terminal differentiation model of human articular chondrocytes in three dimensional cultures mimicking chondrocytic changes in osteoarthritis. Cell Biol Int 30(3): 288–294. doi:10.1016/j.cellbi.2005.11.009

    Article  Google Scholar 

  • Hoemann CD, Sun J, Chrzanowski V, Buschmann MD (2002) A multivalent assay to detect glycosaminoglycan, protein, collagen, RNA, and DNA content in milligram samples of cartilage or hydrogel-based repair cartilage. Anal Biochem 300(1): 1–10. doi:10.1006/abio.2001.5436

    Article  Google Scholar 

  • Huang CY, Mow VC, Ateshian GA (2001) The role of flow-independent viscoelasticity in the biphasic tensile and compressive responses of articular cartilage. J Biomech Eng 123(5): 410–417. doi:10.1115/1.1392316

    Article  Google Scholar 

  • Huang CY, Soltz MA, Kopacz M, Mow VC, Ateshian GA (2003) Experimental verification of the roles of intrinsic matrix viscoelasticity and tension-compression nonlinearity in the biphasic response of cartilage. J Biomech Eng 125(1): 84–93. doi:10.1115/1.1531656

    Article  Google Scholar 

  • Karna E, Miltyk W, Pałka JA, Jarzabek K, Wołczyński S (2006) Hyaluronic acid counteracts interleukin-1-induced inhibition of collagen biosynthesis in cultured human chondrocytes. Pharmacol Res 54(4): 275–281. doi:10.1016/j.phrs.2006.06.002

    Article  Google Scholar 

  • Katakam M, Bell LN, Banga AK (1995) Effect of surfactants on the physical stability of recombinant human growth hormone. J Pharm Sci 84(6): 713–716. doi:10.1002/jps.2600840609

    Article  Google Scholar 

  • Koppenol S (2008) Physical considerations in protein and peptide stability. In: McNally EJ, Hastedt JE (eds) Protein formulation and delivery, drugs and pharmaceutical sciences, vol 175, 2nd edn. Informa Healthcare Inc, USA, pp 43–73

    Google Scholar 

  • Kühn K, D’Lima DD, Hashimoto S, Lotz M (2004) Cell death in cartilage. Osteoarthr Cartil 12(1): 1–16. doi:10.1016/j.joca.2003.09.015

    Article  Google Scholar 

  • Lee RC, Hannig J, Matthews KL, Myerov A, Chen C-T (1999) Pharmaceutical therapies for sealing of permeabilized cell membranes in electrical injuries. Ann N Y Acad Sci 888: 266–273

    Article  Google Scholar 

  • Leipzig ND, Athanasiou KA (2005) Unconfined creep compression of chondrocytes. J Biomech 38(1): 77–85. doi:10.1016/j.jbiomech.2004.03.013

    Article  Google Scholar 

  • Lorenz H, Richter W (2006) Osteoarthritis: cellular and molecular changes in degenerating cartilage. Prog Histochem Cytochem 40(3): 135–163. doi:10.1016/j.proghi.2006.02.003

    Article  Google Scholar 

  • Marks JD, Pan C-Y, Bushell T, Cromie W, Lee RC (2001) Amphiphilic, tri-block copolymers provide potent, membrane-targeted neuroprotection. FASEB J 15(6): 1107–1109. doi:10.1096/fj.00-0547fje

    Google Scholar 

  • Martinez V, Corsini E, Mitjans M, Pinazo A, Vinardell MP (2006) Evaluation of eye and skin irritation of arginine-derivative surfactants using different in vitro endpoints as alternatives to the in vivo assays. Toxicol Lett 164(3): 259–267. doi:10.1016/j.toxlet.2006.01.005

    Article  Google Scholar 

  • Maskarinec SA, Hannig J, Lee RC, Lee KYC (2002) Direct observation of poloxamer 188 insertion into lipid monolayers. Biophys J 82(3): 1453–1459. doi:10.1016/S0006-3495(02)75499-4

    Article  Google Scholar 

  • Mauck RL, Nicoll SB, Seyhan SL, Ateshian GA, Hung CT (2003) Synergistic action of growth factors and dynamic loading for articular cartilage tissue engineering. Tissue Eng 9(4): 597–611. doi:10.1089/107632703768247304

    Article  Google Scholar 

  • Mauck RL, Soltz MA, Wang CCB, Wong DD, Chao P-HG, Valhmu WB, Hung CT, Ateshian GA (2000) Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J Biomech Eng 122(3): 252–260

    Article  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2): 55–63

    Article  Google Scholar 

  • Mouw JK, Case ND, Guldberg RE, Plaas AHK, Levenston ME (2005) Variations in matrix composition and GAG fine structure among scaffolds for cartilage tissue engineering. Osteoarthr Cartil 13(9): 828–836. doi:10.1016/j.joca.2005.04.020

    Article  Google Scholar 

  • Na K, Park JH, Kim SW, Sun BK, Woo DG, Chung HM, Park KH (2006) Delivery of dexamethasone, ascorbate, and growth factor (TGF beta-3) in thermo-reversible hydrogel constructs embedded with rabbit chondrocytes. Biomaterials 27(35): 5951–5957. doi:10.1016/j.biomaterials.2006.08.012

    Article  Google Scholar 

  • Nesic D, Whiteside R, Brittberg M, Wendt D, Martin I, Mainil-Varlet P (2006) Cartilage tissue engineering for degenerative joint disease. Adv Drug Deliv Rev 58(2): 300–322. doi:10.1016/j.addr.2006.01.012

    Article  Google Scholar 

  • O’Hara BP, Urban JP, Maroudas A (1990) Influence of cyclic loading on the nutrition of articular cartilage. Ann Rheum Dis 49(7): 536–539. doi:10.1136/ard.49.7.536

    Article  Google Scholar 

  • Padanilam JT, Bischof JC, Lee RC, Cravalho EG, Tompkins RG, Yarmush ML, Toner M (1994) Effectiveness of poloxamer 188 in arresting calcein leakage from thermally damaged isolated skeletal muscle cells. Ann N Y Acad Sci 720: 111–123. doi:10.1111/j.1749-6632.1994.tb30439.x

    Article  Google Scholar 

  • Paêka JA, Karna E, Miltyk W (1997) Fibroblast chemotaxis and prolidase activity modulation by insulin-like growth factor II and mannose 6-phosphate. Mol Cell Biochem 168(1–2): 177–183. doi:10.1023/A:1006842315499

    Article  Google Scholar 

  • Phillips DM, Haut RC (2004) The use of a non-ionic surfactant (P188) to save chondrocytes from necrosis following impact loading of chondral explants. J Orthop Res 22(5): 1135–1142. doi:10.1016/j.orthres.2004.02.002

    Article  Google Scholar 

  • Poole AR (2003) What type of cartilage repair are we attempting to attain. J Bone Joint Surg Am 85-A(Suppl 2): 40–44

    Google Scholar 

  • Rundell SA, Baars DC, Phillips DM, Haut RC (2005) The limitation of acute necrosis in retro-patellar cartilage after a severe blunt impact to the in vivo rabbit patello-femoral joint. J Orthop Res 23(6): 1363–1369. doi:10.1016/j.orthres.2005.06.001.1100230618

    Google Scholar 

  • Sandell LJ, Aigner T (2001) Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis. Arthritis Res 3(2): 107–113. doi:10.1186/ar148

    Article  Google Scholar 

  • Sharma G, Saxena RK, Mishra P (2007) Differential effects of cyclic and static pressure on biochemical and morphological properties of chondrocytes from articular cartilage. Clin Biomech 22(2): 248–255. doi:10.1016/j.clinbiomech.2006.09.008

    Article  Google Scholar 

  • Toyoda T, Seedhom BB, Yao JQ, Kirkham J, Brookes S, Bonass WA (2003) Hydrostatic pressure modulates proteoglycan metabolism in chondrocytes seeded in agarose. Arthritis Rheum 48(10): 2865–2872. doi:10.1002/art.11250

    Article  Google Scholar 

  • Vrahas MS, Mithoefer K, Joseph D (2004) The long-term effects of articular impaction. Clin Orthop Relat Res 423: 40–43. doi:10.1097/01.blo.0000133567.28491.7d

    Article  Google Scholar 

  • Zuscik MJ, Baden JF, Wu Q, Sheu TJ, Schwarz EM, Drissi H, O’Keefe RJ, Puzas JE, Rosier RN (2004) 5-azacytidine alters TGF-beta and BMP signaling and induces maturation in articular chondrocytes. J Cell Biochem 92(2): 316–331. doi:10.1002/jcb.20050

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayşen Tezcaner.

Additional information

The poster presentation of the work was performed at the International Symposium on Biotechnology: Developments and Trends, Middle East Technical University, Ankara, Turkey, September 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kavas, A., Özdemir, M., Gürses, S. et al. In vitro investigation and biomechanical modeling of the effects of PLF-68 on osteoarthritis in a three-dimensional model. Biomech Model Mechanobiol 10, 641–650 (2011). https://doi.org/10.1007/s10237-010-0262-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-010-0262-2

Keywords

Navigation