Skip to main content
Log in

Effects of photobiomodulation therapy in chondrocyte response by in vitro experiments and experimental model of osteoarthritis in the knee of rats

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The purpose of this study is to evaluate the effects of photobiomodulation (PBM) therapy in chondrocyte response by in vitro experiments and cartilage repair using an experimental model of osteoarthritis (OA) in the knee of rats. The in vitro experiment was performed with chondrocyte cells, and they were divided into two groups: non-irradiated and irradiated with PBM (808 nm; 0.8 J or 1.4 J). Then, cell proliferation was evaluated after 1, 3, and 5 days. The experimental model of osteoarthritis (OA) was performed in the knee of 64 Wistar rats, and they were assorted into control group (CG), PBM (808 nm; 1.4 J). The results of in vitro showed that PBM 1.4 J increased cell proliferation, on days 1 and 5. However, after 3 days was demonstrated a significant increase in cell proliferation in PBM 0.8 J. The in vivo experiment results demonstrated, on histological analysis, that PBM presented less intense signs of tissue degradation with an initial surface discontinuity at the superficial zone and disorganization of the chondrocytes in the cartilage region when compared to CG, after 4 and 8 weeks. These findings were confirmed by immunohistochemistry and qRT-PCR analysis which showed that PBM increased IL-4, IL-10, COL-2, Aggrecan, and TGF-β which are anabolic factors and acts on extracellular matrix. Also, PBM reduces the IL1-β, an inflammatory marker that operates as a catabolic factor on articular cartilage. In conclusion, these results suggest that PBM may have led to a return to tissue homeostasis, promoting chondroprotective effects and stimulating the components of the articular tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hamblin MR (2016) Photobiomodulation or low-level laser therapy. J Biophotonics 9:1122–1124. https://doi.org/10.1002/jbio.201670113

    Article  PubMed  PubMed Central  Google Scholar 

  2. Karu TI (1988) Molecular mechanism of the therapeutic effect of low-intensity laser radiation. Lasers Life Sci 2:53–74

    Google Scholar 

  3. Karu TI, Kolyakov SF (2005) Exact action spectra for cellular responses relevant to phototherapy. Photomed Laser Surg 23:355–361. https://doi.org/10.1089/pho.2005.23.355

    Article  CAS  PubMed  Google Scholar 

  4. De Freitas LF, Hamblin MR (2016) Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron 22:1–37. https://doi.org/10.1109/JSTQE.2016.2561201

    Article  CAS  Google Scholar 

  5. Keszler A, Lindemer B, Hogg N et al (2018) Wavelength-dependence of vasodilation and NO release from S-nitrosothiols and dinitrosyl iron complexes by far red/near infrared light. Arch Biochem Biophys 649:47–52. https://doi.org/10.1016/j.abb.2018.05.006

    Article  CAS  PubMed  Google Scholar 

  6. Assis L, Tim C, Martignago C et al (2018) Effectiveness of photobiomodulation therapy and aerobic exercise training on articular cartilage in an experimental model of osteoarthritis in rats. In: Progress in Biomedical Optics and Imaging - Proceedings of SPIE

  7. Trevisan ES, Martignago CCS, Assis L et al (2020) Effectiveness of led photobiomodulation therapy on treatment with knee osteoarthritis. Am J Phys Med Rehabil 99:725–732. https://doi.org/10.1097/PHM.0000000000001408

    Article  PubMed  Google Scholar 

  8. Sacitharan PK (2019) Ageing and osteoarthritis. Subcell Biochem 91:123–159. https://doi.org/10.1007/978-981-13-3681-2_6

  9. Martel-Pelletier J, Barr AJ, Cicuttini FM et al (2016) Osteoarthritis. Nat Rev Dis Prim 2:16072. https://doi.org/10.1038/nrdp.2016.72

    Article  PubMed  Google Scholar 

  10. Abramoff B, Caldera FE (2020) Osteoarthritis. Med Clin North Am 104:293–311. https://doi.org/10.1016/j.mcna.2019.10.007

    Article  PubMed  Google Scholar 

  11. O’Neill TW, Felson DT (2018) Mechanisms of osteoarthritis (OA) pain. Curr Osteoporos Rep 16:611–616. https://doi.org/10.1007/s11914-018-0477-1

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hasegawa M, Naito Y, Yamaguchi T et al (2018) Factors contributing to patient satisfaction and expectations following computer-assisted total knee arthroplasty. J Knee Surg 31:448–452. https://doi.org/10.1055/s-0037-1604144

    Article  PubMed  Google Scholar 

  13. Mandl LA (2019) Osteoarthritis year in review 2018: clinical. Osteoarthr Cartil 27:359–364. https://doi.org/10.1016/j.joca.2018.11.001

    Article  CAS  Google Scholar 

  14. Tim CR, Bossini PS, Kido HW et al (2016) Effects of low level laser therapy on inflammatory and angiogenic gene expression during the process of bone healing: a microarray analysis. J Photochem Photobiol B Biol 154:8–15. https://doi.org/10.1016/j.jphotobiol.2015.10.028

    Article  CAS  Google Scholar 

  15. de Andrade ALM, Bossini PS, do Canto De Souza ALM et al (2017) Effect of photobiomodulation therapy (808 nm) in the control of neuropathic pain in mice. Lasers Med Sci 32:865–872. https://doi.org/10.1007/s10103-017-2186-x

    Article  PubMed  Google Scholar 

  16. Martignago CCS, Tim CR, Assis L et al (2019) Comparison of two different laser photobiomodulation protocols on the viability of random skin flap in rats. Lasers Med Sci 34:1041–1047. https://doi.org/10.1007/s10103-018-2694-3

    Article  PubMed  Google Scholar 

  17. Castro TNS, Martignago CCS, Assis L et al (2020) Effects of photobiomodulation therapy in the integration of skin graft in rats. Lasers Med Sci 35. https://doi.org/10.1007/s10103-019-02909-y

  18. Mafra de Lima F, Villaverde AB, Salgado MA et al (2010) Low intensity laser therapy (LILT) in vivo acts on the neutrophils recruitment and chemokines/cytokines levels in a model of acute pulmonary inflammation induced by aerosol of lipopolysaccharide from Escherichia coli in rat. J Photochem Photobiol B Biol 101:271–278. https://doi.org/10.1016/j.jphotobiol.2010.07.012

    Article  CAS  Google Scholar 

  19. Wang PF, Chiu AW, Lin YM et al (2014) Effect of fibrin sealant aided with Dexon mesh for renal repair in a rat model of partial nephrectomy. Int J Surg 12:304–309. https://doi.org/10.1016/j.ijsu.2014.01.024

    Article  PubMed  Google Scholar 

  20. de Coelho C F, Leal-Junior ECP, Biasotto-Gonzalez DA et al (2014) Effectiveness of phototherapy incorporated into an exercise program for osteoarthritis of the knee: study protocol for a randomized controlled trial. Trials 15:221. https://doi.org/10.1186/1745-6215-15-221

    Article  PubMed Central  Google Scholar 

  21. Kheshie AR, Alayat MSM, Ali MME (2014) High-intensity versus low-level laser therapy in the treatment of patients with knee osteoarthritis: a randomized controlled trial. Lasers Med Sci 29:1371–1376. https://doi.org/10.1007/s10103-014-1529-0

    Article  PubMed  Google Scholar 

  22. Torricelli P, Giavaresi G, Fini M et al (2001) Laser biostimulation of cartilage: in vitro evaluation. Biomed Pharmacother 55:117–120. https://doi.org/10.1016/S0753-3322(00)00025-1

    Article  CAS  PubMed  Google Scholar 

  23. Assis L, Tim C, Magri A et al (2018) Interleukin-10 and collagen type II immunoexpression are modulated by photobiomodulation associated to aerobic and aquatic exercises in an experimental model of osteoarthritis. Lasers Med Sci 33(9):1875–1882. https://doi.org/10.1007/s10103-018-2541-6

  24. Sanches M, Assis L, Criniti C et al (2018) Chondroitin sulfate and glucosamine sulfate associated to photobiomodulation prevents degenerative morphological changes in an experimental model of osteoarthritis in rats. Lasers Med Sci 33:. https://doi.org/10.1007/s10103-017-2401-9

  25. Jiménez G, Cobo-Molinos J, Antich C, López-Ruiz E (2018) Osteoarthritis: trauma vs disease. Adv Exp Med Biol 1059:63–83. https://doi.org/10.1007/978-3-319-76735-2_3

  26. Thomas CM, Fuller CJ, Whittles CE, Sharif M (2011) Chondrocyte death by apoptosis is associated with the initiation and severity of articular cartilage degradation. Int J Rheum Dis 14:191–198. https://doi.org/10.1111/j.1756-185X.2010.01578.x

    Article  PubMed  Google Scholar 

  27. Hamblin MR, Huang YY, Sharma SK, Carroll J (2011) Biphasic dose response in low level light therapy - an update. Dose-Response 9:602–618. https://doi.org/10.2203/dose-response.11-009.Hamblin

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huang YY, Chen ACH, Carroll JD, Hamblin MR (2009) Biphasic dose response in low level lightherapy. Dose-Response 7:358–383. https://doi.org/10.2203/dose-response.09-027.Hamblin

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jia YL, Guo ZY (2004) Effect of low-power He-Ne laser irradiation on rabbit articular chondrocytes in vitro. Lasers Surg Med 34:323–328. https://doi.org/10.1002/lsm.20017

    Article  PubMed  Google Scholar 

  30. Oliveira P, Santos AA, Rodrigues T et al (2013) Effects of phototherapy on cartilage structure and inflammatory markers in an experimental model of osteoarthritis. J Biomed Opt 18:128004

    Article  PubMed  Google Scholar 

  31. Bublitz C, Medalha C, Oliveira P et al (2014) Low-level laser therapy prevents degenerative morphological changes in an experimental model of anterior cruciate ligament transection in rats. Lasers Med Sci 29. https://doi.org/10.1007/s10103-014-1546-z

  32. Chow YY, Chin K-Y (2020) The role of inflammation in the pathogenesis of osteoarthritis. Mediators Inflamm 2020:1–19. https://doi.org/10.1155/2020/8293921

    Article  CAS  Google Scholar 

  33. Jenei-Lanzl Z, Meurer A, Zaucke F (2019) Interleukin-1β signaling in osteoarthritis – chondrocytes in focus. Cell Signal 53:212–223. https://doi.org/10.1016/j.cellsig.2018.10.005

    Article  CAS  PubMed  Google Scholar 

  34. Alves ACA, Albertini R, dos Santos SA et al (2014) Effect of low-level laser therapy on metalloproteinase MMP-2 and MMP-9 production and percentage of collagen types I and III in a papain cartilage injury model. Lasers Med Sci 29:911–919. https://doi.org/10.1007/s10103-013-1427-x

    Article  PubMed  Google Scholar 

  35. dos Santos SA, Alves ACA, Leal-Junior ECP et al (2013) Comparative analysis of two low-level laser doses on the expression of inflammatory mediators and on neutrophils and macrophages in acute joint inflammation. Lasers Med Sci. https://doi.org/10.1007/s10103-013-1467-2

    Article  PubMed  Google Scholar 

  36. Yigit S, Inanir A, Tekcan A et al (2014) Significant association of interleukin-4 gene intron 3 VNTR polymorphism with susceptibility to knee osteoarthritis. Gene 537:6–9. https://doi.org/10.1016/j.gene.2013.12.060

    Article  CAS  PubMed  Google Scholar 

  37. Wojdasiewicz P, Poniatowski ŁA, Szukiewicz D (2014) The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm 2014:1–19. https://doi.org/10.1155/2014/561459

    Article  CAS  Google Scholar 

  38. Khella CM, Horvath JM, Asgarian R et al (2021) Anti-inflammatory therapeutic approaches to prevent or delay post-traumatic osteoarthritis (PTOA) of the knee joint with a focus on sustained delivery approaches. Int J Mol Sci 22:8005. https://doi.org/10.3390/ijms22158005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Doi H, Nishida K, Yorimitsu M et al (2008) Interleukin-4 downregulates the cyclic tensile stress-induced matrix metalloproteinases-13 and cathepsin B expression by normal chondrocytes. Acta Med Okayama 62:119–126

    CAS  PubMed  Google Scholar 

  40. Steen-Louws C, Popov-Celeketic J, Mastbergen SC et al (2018) IL4-10 fusion protein has chondroprotective, anti-inflammatory and potentially analgesic effects in the treatment of osteoarthritis. Osteoarthr Cartil 26:1127–1135. https://doi.org/10.1016/j.joca.2018.05.005

    Article  CAS  Google Scholar 

  41. Jansen NWD, Roosendaal G, Hooiveld MJJ et al (2008) Interleukin-10 protects against blood-induced joint damage. Br J Haematol 142:953–961. https://doi.org/10.1111/j.1365-2141.2008.07278.x

    Article  CAS  PubMed  Google Scholar 

  42. Cherifi C, Monteagudo S, Lories RJ (2021) Promising targets for therapy of osteoarthritis: a review on the Wnt and TGF-β signalling pathways. Ther Adv Musculoskelet Dis 13:1759720X2110069. https://doi.org/10.1177/1759720X211006959

    Article  Google Scholar 

  43. Schaible H-G (2012) Mechanisms of chronic pain in osteoarthritis. Curr Rheumatol Rep 14:549–556. https://doi.org/10.1007/s11926-012-0279-x

    Article  CAS  PubMed  Google Scholar 

  44. Rayegani SM, Bahrami MH, Elyaspour D, Sanjari H (2012) Therapeutic effects of low level laser therapy (LLLT) in knee osteoarthritis, compared to therapeutic ultrasound. J Lasers Med Sci 3:71–74. https://doi.org/10.22037/2010.v3i2.2830

    Article  Google Scholar 

  45. Perrot S (2015) Osteoarthritis pain. Best Pract Res Clin Rheumatol 29:90–97. https://doi.org/10.1016/j.berh.2015.04.017

    Article  PubMed  Google Scholar 

  46. Yurtkuran M, Alp A, Konur S et al (2007) Laser acupuncture in knee osteoarthritis: a double-blind, randomized controlled study. Photomed Laser Surg 25:14–20. https://doi.org/10.1089/pho.2006.1093

    Article  CAS  PubMed  Google Scholar 

  47. Huang Z, Chen J, Ma J et al (2015) Effectiveness of low-level laser therapy in patients with knee osteoarthritis: a systematic review and meta-analysis. Osteoarthr Cartil 23:1437–1444. https://doi.org/10.1016/j.joca.2015.04.005

    Article  CAS  Google Scholar 

  48. Vassão PG, Souza MC De, Silva BA et al (2019) Photobiomodulation via a cluster device associated with a physical exercise program in the level of pain and muscle strength in middle-aged and older women with knee osteoarthritis: a randomized placebo-controlled trial. Lasers Med Sci 35(1):139–148. https://doi.org/10.1007/s10103-019-02807-3

Download references

Acknowledgements

We thank the Brazilian funding agency FAPESP for the financial support of this research (FAPESP 2014/13702-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Roberta Tim.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tim, C.R., Martignago, C.C.S., Assis, L. et al. Effects of photobiomodulation therapy in chondrocyte response by in vitro experiments and experimental model of osteoarthritis in the knee of rats. Lasers Med Sci 37, 1677–1686 (2022). https://doi.org/10.1007/s10103-021-03417-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-021-03417-8

Keywords

Navigation