Skip to main content
Log in

Buckling of adaptive elastic bone-plate: theoretical and numerical investigation

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

During day-to-day activities, many bones in the axial and appendicular skeleton are subjected to repetitive, cyclic loading that often results directly in an increased risk of bone fracture. In clinical orthopedics, trabecular fatigue fractures are observed as compressive stress fractures in the proximal femur, vertebrae, calcaneus and tibia, that are often preceded by buckling and bending of microstructural elements (Müller et al. in J Biomechanics 31:150 1998; Gibson in J Biomechanics 18:317–328 1985; Gibson and Ashby in Cellular solids 1997; Lotz et al. in Osteoporos Int 5:252–261 1995; Carter and Hayes in Science 194:1174–1176 1976). However, the relative importance of bone density and architecture in the etiology of these fractures are poorly understood and consequently not investigated from a biomechanical point of view. In the present contribution, an attempt is made to formulate a bone-plate buckling theory using Cowin’s concepts of adaptive elasticity (Cowin and Hegedus in J Elast 6:313–325 1976; Hegedus and Cowin J Elast 6:337–352 1976). In particular, the buckling problem of a KirchhoffLove bone plate is investigated numerically by using the finite difference method and an iterative solving approach (Chen in Comput Methods Appl Mech Eng 167:91–99 1998; Hildebland in Introduction to numerical analysis 1974; Richtmyer and Morton in Difference methods for initial-value problems 1967).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Schematically, bone contains primarily three types of cells: osteoblasts, which deposit bone; osteoclasts, which resorb bone; and osteocytes which are converted osteoblasts that become trapped in the bone matrix and then play a part in regulating the turnover of bone matrix. The bone resorption involves hydrolysis of collagen and the dissolution of bone mineral. In the bone deposition, the most obvious function is to synthesize osteoid, collagen and to control its subsequent mineralization.

References

  • Bell GH (1967) Variations in strength of vertebrae with age and their relation to osteoporosis. Calcif Tissue Res1:75–86

    CAS  PubMed  Google Scholar 

  • Carter DR, Hayes WC (1976) Bone compressive strength: the influence of density and strain rate. Science 194:1174–1176

    CAS  PubMed  Google Scholar 

  • Chaboche JL (1988) Continuum damage mechanics. Part I. General concepts. Part II. Damage growth, crack initiation and crack growth. J Appl Mech 55:233–247

    Google Scholar 

  • Chen YZ (1998) Evaluation of buckling loading of rectangular bending plate by using an iterative approach. Comput Methods Appl Mech Eng 167:91–99

    Article  Google Scholar 

  • Ciarelli TE, Fyhrie DP, Parfitt AM (2003) Effects of vertebral bone fragility and bone formation rate on the mineralization levels of cancellous bone from white females. Bone 32:311–315

    Article  CAS  PubMed  Google Scholar 

  • Conolly J (1981) The management of fractures and dislocations, an Atlas, 3rd edn. W.B. Saunders, Philadelphia

    Google Scholar 

  • Cowin SC, Hegedus DM (1976) Bone remodeling I: theory of adaptive elasticity. J Elast 6:313–325

    Google Scholar 

  • Davidson JS, Brown DJ, Barnes SN, Bruce CE (2001) Simple treatment for torus fractures of the distal radius. J Bone Joint Surg Br 83:1173–1175

    Google Scholar 

  • Firoozbakhsh K, Cowin SC (1980) Devolution of inhomogeneities in bone structure—predictions of adaptive elasticity theory. J Biomech Eng 102:287–293

    CAS  PubMed  Google Scholar 

  • Frost HM (1964) The laws of bone structure. Charles C. Thomas, Springfield, IL

  • Fung YC (1993) Biomechanics: mechanical properties of living tissue. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Gibson LJ (1985) The mechanical behaviour of cancellous bone. J Biomech 18:317–328

    Google Scholar 

  • Gibson LJ, Ashby MF (1997) Cellular solids. Cambridge University Press, Cambridge

    Google Scholar 

  • Gomberg BR, Saha PK, Song HK, Hwang SN, Wehrli FW (2000) Topological analysis of trabecular bone MR images. IEEE Trans Med Imaging 19:166–174

    Article  CAS  PubMed  Google Scholar 

  • Gunaratne GH, Mohanty KK, Wimalawansa SJ (2002) A model for trabecular bone and an application to osteoporosis. Physica 315:98–104

    Google Scholar 

  • Hasegawa K, Turner CH, Recker RR, Wu E, Burr DB (1995) Elastic properties of osteoporotic bone measured by scanning acoustic microscopy. Bone 16:85–90

    Article  CAS  PubMed  Google Scholar 

  • Hegedus DH, Cowin SC (1976) Bone remodeling II: small strain adaptive elasticity. J Elast 6:337–352

    Google Scholar 

  • Hildebland FB (1974) Introduction to numerical analysis. McGraw-Hill, New York

    Google Scholar 

  • Huiskes R (1997) Simulation of self-organization and functional adaptation in bone. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Huiskes R, Ruimerman R, Lenthe G, Janssen J (2000) Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature 405:704–706

    Article  CAS  PubMed  Google Scholar 

  • Jordan GR, Loveridge N, Bell KL, Power J, Dickson GR, Vedi S, Rushton N, Clarke MT, Reeve J (2003) Increased femoral neck cancellous bone and connectivity in coxarthrosis (hip osteoarthritis). Bone 32:86–95

    Article  CAS  PubMed  Google Scholar 

  • Lee TC, Noelke L, McMahon GT, Mulville JP, Taylor D (1998) Functional adaptation in bone. In: Pedersen P, Bendsoe MP (eds) Synthesis in bio solid mechanics. Kluwer, Dordrecht

  • Lotz JC, Cheal EJ, Hayes WC (1995) Stress distribution within the proximal femur during gait and falls: Implications for osteoporosis fracture. Osteoporos Int 5:252–261

    CAS  PubMed  Google Scholar 

  • Martin RB, Burr DB (1989) The structure, function and adaptation of cortical bone. Raven Press, New York

    Google Scholar 

  • Matsunaga H (1997) Buckling instabilities of thick elastic plates subjected to in-plane stresses. Comput Struct 62:205–214

    Article  Google Scholar 

  • Mindlin RD (1951) Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. J Appl Mech 18:31–38

    Google Scholar 

  • Müller R, Gerber SC, Hayes WC (1998) Micro-compression: a novelmethod for the non destructive assessment of bone failure. J Biomech 31:150

    Article  Google Scholar 

  • Murakami S, Kamiya K (1997) Constitutive and damage evolution equations of elastic-brittle materials based on irreversible thermodynamics. Int J Mech Sci 39:473–486

    Article  Google Scholar 

  • Ogden J (1982) Skeletal injury in the child. Lea and Fediger, Philadelphie

    Google Scholar 

  • Parfitt AM (1992) Implications of architecture for the pathogenesis and prevention of vertebral fracture. Bone 13:S41–S47

    Article  Google Scholar 

  • Ramtani S, Zidi M (2001) A theoretical model of the effect of continuum damage on a bone adaptation model. J Biomech Eng 34:471–479

    Article  CAS  Google Scholar 

  • Ramtani S, Zidi M (2002) Damaged-bone adaptation under steady homogeneous stress. J Biomech Eng 124:1–6

    Google Scholar 

  • Ramtani S, Garcia JM, Doblaré M (2004) Computer simulation of an adaptive damage-bone remodeling law applied to three unit-bone bars structure. Comput Biol Med 34:259–273

    Google Scholar 

  • Recker RR (1989) Low bone mass may not be the only cause of skeletal fragility in osteoporosis. Proc Soc Exp Biol Med 191(3):272–274

    CAS  PubMed  Google Scholar 

  • Reismann H, Pawlik PS (1991) Elasticity: theory and applications. Krieger, New York

    Google Scholar 

  • Richtmyer RD, Morton KW (1967) Difference methods for initial-value problems. InterScience Publishers, Wiley, New York

  • Rüeggseger P, Koller B, Müller R (1996) A microtomographic system for the non-destructive evaluation of bone architecture. Calcif Tissue Int 58:24–29

    Article  CAS  PubMed  Google Scholar 

  • Selby PL, Davie MWJ, Ralston SH, Stone MD (2002) Guidelines on the management of Paget’s disease of bone. Bone 31:10–19

    Article  Google Scholar 

  • Solan MC, Rees R, Daly K (2002) Current management of torus fractures of the distal radius. Injury 33:503–505

    Article  CAS  PubMed  Google Scholar 

  • Stölken J, Kinney J (2004) On the importance of geometric nonlinearity in finite-element simulations of trabecular bone failure. Bone 33:495–504

    Google Scholar 

  • Timoshenko SP, Gere JM (1961) Theory of elastic stability. McGraw-Hill, New York

    Google Scholar 

  • Turner CH (1989) Yield behavior of bovine cancellous bone. J Biomech Eng 111:256–260

    CAS  PubMed  Google Scholar 

  • Vinson JR (1989) The behavior of thin walled structures-Beams, plates, and shells. Kluwer, Dordrecht

    Google Scholar 

  • Wright TM, Hayes WC (1976) Tensile testing of bone over a wide range of strain rates, microstructure and density. Med Biol Eng 14:671–679

    CAS  PubMed  Google Scholar 

  • Yang G, Kabel J, Van Rietbergen B, Odgaard A, Huiskes R, Cowin SC (1999) The anisotropic Hooke’s law for cancellous bone and wood. J Elast 53:125–146

    Article  Google Scholar 

  • Zidi M, Ramtani S (2000) Stability analysis and finite element simulation of bone remodeling model. J Biomech Eng 122:1–4

    Article  PubMed  Google Scholar 

  • Ziegler H (1956) On concepts of elastic stability. Adv Appl Mech 4:357–403

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ramtani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramtani, S., Abdi, M. Buckling of adaptive elastic bone-plate: theoretical and numerical investigation. Biomech Model Mechanobiol 3, 200–208 (2005). https://doi.org/10.1007/s10237-004-0056-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-004-0056-5

Keywords

Navigation