Skip to main content

Advertisement

Log in

WAVERYS: a CMEMS global wave reanalysis during the altimetry period

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

As part of the Copernicus Marine Service, WAVERYS is the multi-year wave reanalysis that provides global wave data with a fine grid resolution of 1/5°. This wave reanalysis covers the period 1993–2019 and disseminates 3-h integrated wave parameters describing the sea state at the ocean surface. The wave model used is the version 4 of the model MFWAM, which is driven by sea ice fraction and wind provided by the atmospheric reanalysis ERA5. The WAVERYS includes the assimilation of altimeter wave data and directional wave spectra provided by Sentinel-1. The wave reanalysis includes also wave-current interactions by using 3-h surface current forcing provided by the ocean reanalysis GLORYS. This paper highlights the assessment of wave parameters provided by the WAVERYS. The validation has been performed with independent altimeter significant wave heights and buoy wave data. The results show the good accuracy of scatter index of SWH (significant wave height) which is 8.7% in comparison with HY-2A altimeter. Moreover, we point out that scatter index of SWH from the WAVERYS is improved by about 9% with respect to the ERA5 wave dataset. We also indicate the good accuracy of swell propagation thanks to the assimilation of directional wave spectra. An analysis has been conducted for wave-current interactions and also discussions about extreme values and trend of time series are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Aarnes OJ, Abdalla S, Bidlot JR, Breivik Ø (2015) Marine wind and wave height trends at different ERA-interim forecast ranges. J Clim 28:819–837. https://doi.org/10.1175/JCLI-D-14-00470.1

    Article  Google Scholar 

  • Abdalla S, Janssen PAEM (2017) Monitoring waves and surface winds by satellite altimetry applications. In: Stammer D, Cazenave A (eds) Satellite altimetry over oceans and land surfaces, CRC Press. Taylor & Francis Group, USA, pp 379–424

    Google Scholar 

  • Alfonso CM De, Manzano F, Gallardo A (2019) CMEMS quality information for reprocessed in situ product (WAVES) INSITU_GLO_WAV_REP_OBSERVATIONS_013_045. https://doi.org/10.13155/58696

  • Aouf L, Lefèvre JM, Hauser D (2006) Assimilation of directional wave spectra in the wave model WAM: an impact study from synthetic observations in preparation for the SWIMSAT Satellite mission. J Atmos Ocean Technol 23:448–463. https://doi.org/10.1175/JTECH1861.1

    Article  Google Scholar 

  • Aouf L, Hauser D, Tison C, Mouche A (2016) Perspectives for directional spectra assimilation: results from a study based on joint assimilation of CFOSAT synthetic wave spectra and observed SAR spectra from Sentinel-1A. In: International Geoscience and Remote Sensing Symposium (IGARSS), pp 5820–5822

    Google Scholar 

  • Aouf L, Dalphinet A, Law-Chune S, Drillet Y (2018) The upgraded CMEMS global wave system: IMPROVEMENTS and efficiency for ocean/wave coupling. In: EGU General Assembly

    Google Scholar 

  • Aouf L, Dalphinet A, Law-Chune S, Drillet Y (2019) Evaluation of surface currents forcing in CMEMS wave system. In: ESA Workshop of World ocean circulation-Users

    Google Scholar 

  • Ardhuin F, Rogers E, Babanin AV, Filipot JF, Magne R, Roland A, van der Westhuysen A, Queffeulou P, Lefevre JM, Aouf L, Collard F (2010) Semiempirical dissipation source functions for ocean waves. Part I: definition, calibration, and validation. J Phys Oceanogr 40:1917–1941. https://doi.org/10.1175/2010JPO4324.1

    Article  Google Scholar 

  • Ardhuin F, Roland A, Dumas F, Bennis AC, Sentchev A, Forget P, Wolf J, Girard F, Osuna P, Benoit M (2012) Numerical wave modeling in conditions with strong currents: dissipation,refraction, and relative wind. J Phys Oceanogr 42:2101–2120. https://doi.org/10.1175/JPO-D-11-0220.1

    Article  Google Scholar 

  • Ardhuin F, Gille ST, Menemenlis D, Rocha CB, Rascle N, Chapron B, Gula J, Molemaker J (2017) Small-scale open ocean currents have large effects on wind wave heights. J Geophys Res Ocean 122:4500–4517. https://doi.org/10.1002/2016JC012413

    Article  Google Scholar 

  • Barbariol F, Bidlot JR, Cavaleri L, Sclavo M, Thomson J, Benetazzo A (2019) Maximum wave heights from global model reanalysis. Prog Oceanogr 175:139–160. https://doi.org/10.1016/j.pocean.2019.03.009

    Article  Google Scholar 

  • Belmonte Rivas M, Stoffelen A (2019) Characterizing ERA-Interim and ERA5 surface wind biases using ASCAT. Ocean Sci 15:831–852. https://doi.org/10.5194/os-15-831-2019

    Article  Google Scholar 

  • Bidlot J (2010) Use of MERCATOR surface currents in the ECMWF forecasting system. ECMWF Research Department Memorandum. Reading, United Kingdom. R60.9/JB/1

  • Bidlot J-R (2012a) Present status of wave forecasting at ECMWF. In: Workshop on Ocean Waves. ECMWF, Reading, United Kingdom

  • Bidlot J (2012b) Use of MERCATOR surface currents in the ECMWF forecasting system: a follow-up study. ECMWF Research Department Memorandum. Reading, United Kingdom

  • Bidlot J, Janssen P, Abdalla S (2007) A revised formulation of ocean wave dissipation and its model impact ECMWF. Tech. Memo. 509. ECMWF, Reading, United Kingdom, 27pp. Available online at: http://www.ecmwf.int/publications/. 29

  • Caires S, Sterl A, Bidlot JR, Graham N, Swail V (2004) Intercomparison of different wind-wave reanalyses. J Clim 17:1893–1913. https://doi.org/10.1175/1520-0442(2004)017<1893:IODWR>2.0.CO;2

    Article  Google Scholar 

  • Cavaleri L, Bertotti L, Torrisi L, Bitner-Gregersen E, Serio M, Onorato M (2012) Rogue waves in crossing seas: the Louis Majesty accident. J Geophys Res Ocean 117. https://doi.org/10.1029/2012JC007923

  • Chatelain M, Guizien K (2010) Modelling coupled turbulence-dissolved oxygen dynamics near the sediment-water interface under wind waves and sea swell. Water Res 44:1361–1372. https://doi.org/10.1016/j.watres.2009.11.010

    Article  Google Scholar 

  • Chawla A, Spindler DM, Tolman HL (2013) Validation of a thirty year wave hindcast using the Climate Forecast System Reanalysis winds-12th International Workshop on Wave Hindcasting and Forecasting. Ocean Model 70:189–206. https://doi.org/10.1016/j.ocemod.2012.07.005

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. https://doi.org/10.1002/qj.828

    Article  Google Scholar 

  • Drévillon M, Régnier C, Lellouche J-M, et al (2018) CMEMS Quality Information Document for Global Ocean Reanalysis Products-GLOBAL-REANALYSIS-PHY-001-030. 1–48

  • Durrant TH, Greenslade DJM, Simmonds I (2013) The effect of statistical wind corrections on global wave forecasts. Ocean Model 70:116–131. https://doi.org/10.1016/j.ocemod.2012.10.006

    Article  Google Scholar 

  • ECMWF (2012) IFS DOCUMENTATION–Part VII: ECMWF Wave Model. IFS Doc CY41R1 1–79

  • Gallet B, Young WR (2014) Refraction of swell by surface currents. J Mar Res 72:105–126. https://doi.org/10.1357/002224014813758959

    Article  Google Scholar 

  • Gunn K, Stock-Williams C (2012) Quantifying the global wave power resource. Renew Energy 44:296–304. https://doi.org/10.1016/j.renene.2012.01.101

    Article  Google Scholar 

  • Hajduch G, Vincent P, Meadows P, Small D (2020) Sentinel 1 Annual Performance Report for 2019, version 1.1. https://doi.org/10.13140/RG.2.2.28472.16646

  • Hasselmann S, Hasselmann K (1985) Computations and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum. Part I: a new method for efficient computations of the exact nonlinear transfer integral. J Phys Ocean 15:1369–1377. https://doi.org/10.1175/1520-0485(1985)015<1369:capotn>2.0.co;2

    Article  Google Scholar 

  • Hasselmann K, Hasselmann S, Bauer E et al (1988) The WAM model-a third generation ocean wave prediction model. J Phys Ocean 18:1775–1810

    Article  Google Scholar 

  • Hasselmann K, Chapron B, Aouf L et al (2013) The ERS SAR wave mode: a breakthrough in global ocean wave observations. In: European Space Agency, (Special Publication) ESA SP, pp 167–197

    Google Scholar 

  • Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J, Nicolas J, Peubey C, Radu R, Schepers D, Simmons A, Soci C, Abdalla S, Abellan X, Balsamo G, Bechtold P, Biavati G, Bidlot J, Bonavita M, Chiara G, Dahlgren P, Dee D, Diamantakis M, Dragani R, Flemming J, Forbes R, Fuentes M, Geer A, Haimberger L, Healy S, Hogan RJ, Hólm E, Janisková M, Keeley S, Laloyaux P, Lopez P, Lupu C, Radnoti G, Rosnay P, Rozum I, Vamborg F, Villaume S, Thépaut JN (2020) The ERA5 global reanalysis. Q J R Meteorol Soc 146:1999–2049. https://doi.org/10.1002/qj.3803

    Article  Google Scholar 

  • Irvine DE, Tilley DG (1988) Ocean wave directional spectra and wave-current interaction in the Agulhas from the shuttle imaging radar-B synthetic aperture radar. J Geophys Res Ocean 93:15389–15401. https://doi.org/10.1029/JC093iC12p15389

    Article  Google Scholar 

  • Knapp KR, Kruk MC, Levinson DH, Diamond HJ, Neumann CJ (2010) The international best track archive for climate stewardship (IBTrACS). Bull Am Meteorol Soc 91:363–376. https://doi.org/10.1175/2009BAMS2755.1

    Article  Google Scholar 

  • Kobayashi S, Ota Y, Harada Y et al (2015) The JRA-55 reanalysis: general specifications and basic characteristics. J Meteorol Soc Japan 93:5–48. https://doi.org/10.2151/jmsj.2015-001

    Article  Google Scholar 

  • Law-Chune S, Aouf L, Bruno L, Dalphinet A (2019) CMEMS Quality Information Document for GLOBAL Ocean Waves Reanalysis GLOBAL_REANALYSIS_WAV_001_032

  • Le Traon PY, Reppucci A, Alvarez Fanjul E et al (2019) From observation to information and users: the Copernicus Marine Service perspective. Front Mar Sci 6. https://doi.org/10.3389/fmars.2019.00234

  • Lellouche J-M, Greiner E, Le Galloudec O et al (2018) Recent updates on the Copernicus Marine Service global ocean monitoring and forecasting real-time 1/12&amp;deg; high resolution system. Ocean Sci Discuss:1–70. https://doi.org/10.5194/os-2018-15

  • Lemos G, Semedo A, Dobrynin M, Behrens A, Staneva J, Bidlot JR, Miranda PMA (2019) Mid-twenty-first century global wave climate projections: results from a dynamic CMIP5 based ensemble. Glob Planet Change 172:69–87. https://doi.org/10.1016/j.gloplacha.2018.09.011

    Article  Google Scholar 

  • Li H, Yu C, Chen R, Li J, Li J (2012) Novel ionic liquid-type Gemini surfactants: synthesis, surface property and antimicrobial activity. Colloids Surfaces A Physicochem Eng Asp 395:116–124. https://doi.org/10.1016/j.colsurfa.2011.12.014

    Article  Google Scholar 

  • Lionello P, Gunther H, Janssen PAEM (1992) Assimilation of altimeter data in a global third-generation wave model. J Geophys Res 97:14453. https://doi.org/10.1029/92jc01055

    Article  Google Scholar 

  • Mapp GR, Welch CS, Munday JC (1985) Wave refraction by warm core rings. J Geophys Res 90:7153. https://doi.org/10.1029/jc090ic04p07153

    Article  Google Scholar 

  • Mazas F, Hamm L (2011) A multi-distribution approach to POT methods for determining extreme wave heights. Coast Eng 58:385–394. https://doi.org/10.1016/j.coastaleng.2010.12.003

    Article  Google Scholar 

  • Mentaschi L, Besio G, Cassola F, Mazzino A (2013) Problems in RMSE-based wave model validations. Ocean Model 72:53–58. https://doi.org/10.1016/j.ocemod.2013.08.003

    Article  Google Scholar 

  • Mínguez R, Reguero BG, Luceño A, Méndez FJ (2012) Regression models for outlier identification (hurricanes and typhoons) in wave hindcast databases. J Atmos Ocean Technol 29:267–285. https://doi.org/10.1175/JTECH-D-11-00059.1

    Article  Google Scholar 

  • Mori N, Shimura T, Kamahori H, Chawla A (2017) Historical wave climate hindcasts based on Jra-55. Proc Coast Dyn

  • National Geophysical Data Center N (2006) National Geophysical Data Center, 2006. 2-minute Gridded Global Relief Data (ETOPO2) v2. In: Natl. Geophys. Data Center, NOAA

    Google Scholar 

  • Perez J, Menendez M, Losada IJ (2017) GOW2: a global wave hindcast for coastal applications. Coast Eng 124:1–11. https://doi.org/10.1016/j.coastaleng.2017.03.005

    Article  Google Scholar 

  • Queffeulou P, Croizé-Fillon D (2016) Global altimeter SWH data set–September 2016. IFremer, Plouzane, France

    Google Scholar 

  • Roh M-I (2013) Determination of an economical shipping route considering the effects of sea state for lower fuel consumption. Int J Nav Archit Ocean Eng 5:246–262. https://doi.org/10.2478/ijnaoe-2013-0130

    Article  Google Scholar 

  • Röhrs J, Christensen KH, Vikebø F, Sundby S, Saetra Ø, Broström G (2014) Wave-induced transport and vertical mixing of pelagic eggs and larvae. Limnol Oceanogr 59:1213–1227. https://doi.org/10.4319/lo.2014.59.4.1213

    Article  Google Scholar 

  • Saha S, Moorthi S, Pan HL, Wu X, Wang J, Nadiga S, Tripp P, Kistler R, Woollen J, Behringer D, Liu H, Stokes D, Grumbine R, Gayno G, Wang J, Hou YT, Chuang HY, Juang HMH, Sela J, Iredell M, Treadon R, Kleist D, van Delst P, Keyser D, Derber J, Ek M, Meng J, Wei H, Yang R, Lord S, van den Dool H, Kumar A, Wang W, Long C, Chelliah M, Xue Y, Huang B, Schemm JK, Ebisuzaki W, Lin R, Xie P, Chen M, Zhou S, Higgins W, Zou CZ, Liu Q, Chen Y, Han Y, Cucurull L, Reynolds RW, Rutledge G, Goldberg M (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91:1015–1057. https://doi.org/10.1175/2010BAMS3001.1

    Article  Google Scholar 

  • Sarpkaya TS (2012) Wave forces on offshore structures. In: Cambridge University (ed) Wave forces on offshore structures. pp 285–320. https://doi.org/10.1017/CBO9781139195898.009doi:10.1017/CBO9781139195898.009

  • Stopa JE (2018) Wind forcing calibration and wave hindcast comparison using multiple reanalysis and merged satellite wind datasets. Ocean Model 127:55–69. https://doi.org/10.1016/j.ocemod.2018.04.008

    Article  Google Scholar 

  • Szelangiewicz T, Wisniewski B, Zelazny K (2014) The influence of wind, wave and loading condition on total resistance and speed of the vessel. Polish Marit Res 21:61–67. https://doi.org/10.2478/pomr-2014-0031

    Article  Google Scholar 

  • Timmermans BW, Gommenginger CP, Dodet G, Bidlot JR (2020) Global wave height trends and variability from new multimission satellite altimeter products, reanalyses, and wave buoys. Geophys Res Lett 47. https://doi.org/10.1029/2019GL086880

  • Uppala SM, Kållberg PW, Simmons AJ et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012

    Article  Google Scholar 

  • Vinet L, Zhedanov A (2011) A “missing” family of classical orthogonal polynomials. J Phys A Math Theor 44:98–106. https://doi.org/10.1088/1751-8113/44/8/085201

    Article  Google Scholar 

  • Young IR (2017) A review of parametric descriptions of tropical cyclone wind-wave generation. Atmosphere (Basel) 8. https://doi.org/10.3390/atmos8100194

Download references

Acknowledgements

The authors would like to thank Isabel Garcia-Hermosa (Mercator-Ocean International) for her review of the QUID of the WAVERYS product, which was the first step to the writing of this article. CNES provided us with level 2 wave data of the HY-2A mission. We also thank the two anonymous reviewers and the editor whose comments and questions helped greatly to improve our presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Law-Chune.

Additional information

Responsible Editor: Val Swail

This article is part of the Topical Collection on the 16th International Workshop on Wave Hindcasting and Forecasting in Melbourne, AU, November 10–15, 2019

Appendices

Appendix 1: ST4 physics settings

Table 2 settings for ST4 physics used in the wave model

Appendix 2: Assimilated altimetry data

Fig. 14
figure 14

List of assimilated satellite data and their period of use. Altimeters are in blue and SAR is in red

Fig. 15
figure 15

Map of all the SWH altimetry tracks assimilated in the system for June 10, 2017

Figure 14 shows for each altimetry mission the period of application for the WAVERYS. It can therefore be seen that the most constrained periods are between the years 2002–2006 (5 altimeters) and 2016–2018 (4 altimeters + SAR sentinel 1). Figure 15 shows an illustration of the spatial coverage of the assimilated altimeter data over the course of a day. Because of the orbits’ offset and entanglement, the mesh can be more or less loose or tightened over an area within a day.

Appendix 3: Correction of HY-2A SWH

In this section, we implemented a comparison between the Jason-2 and HY-2A significant wave heights. The analysis is performed at crossovers of ground tracks of the two altimeter missions with a time window of 2 h. We computed super-observations in a box of grid size of 0.5° for the comparison between the Jason-2 and HY-2A. It has been collected 6192 data during the period January to June 2015. Figure 16 shows the scatter plot of SWH from the Jason-2 and HY-2A. It is easy to see that there is a strong underestimation of SWH of HY-2A in comparison with Jason-2. The bias increases for high waves. We then computed an orthogonal linear regression which gives the a and b coefficients of 0.944 and − 0.01, respectively. This relation is used in order to remove the bias of SWH for HY-2A.

Fig. 16
figure 16

Scatter plot of SWH from Jason-2 and HY-2A. The colourbar indicates the density of data, while the purple dashed line shows the orthogonal linear regression with a = 0.944 and b = − 0.01

Appendix 4: ERA5 SWH and mean wave period trends

Fig. 17
figure 17

Trends for SWH and MWP for ERA5, calculated over the same period and following the same method as in Section 3.2 (compared to Fig. 12e and f for WAVERYS)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Law-Chune, S., Aouf, L., Dalphinet, A. et al. WAVERYS: a CMEMS global wave reanalysis during the altimetry period. Ocean Dynamics 71, 357–378 (2021). https://doi.org/10.1007/s10236-020-01433-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-020-01433-w

Keywords

Navigation