Skip to main content

Advertisement

Log in

Historical and future development of the tidally averaged transport of sandy sediments in the Scheldt estuary: a 2D exploratory model

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

To investigate the historical development of the tidally averaged transport of sandy sediments in the main branch of the Scheldt estuary over the last decades (1950–2013), a 2D exploratory model has been developed. This model comprises the depth-averaged (2DH) shallow water equations, driven by an asymmetric tidal forcing at the seaward side, as well as an advection-diffusion equation to describe the depth-integrated dynamics of the suspended sediment concentration. The tidally averaged sand transport results from a subtle balance between the various contributions; advective contributions due to internally generated and externally prescribed overtides and the diffusive and topographically induced contributions. A seaward tidally averaged sand transport is found near the open boundary, whose magnitude has increased since ca. 1950. Moving upstream, the magnitude of the seaward transport decreases and changes into a smaller landward transport with a local maximum near the landward boundary. This maximum has increased over the years. Varying parameters that capture changes in the environment, e.g. historical changes in the bathymetry, future mean sea-level rise or changes in tidal forcing, results in changes in the tidally averaged sand transport that are systematically analysed and related to changes in the various contributions. Our model shows that there is a competition, in terms of determining the magnitude and the direction of the tidally averaged sand transport, between the effects of historical bathymetric changes, changes in tidal forcing and (projected) SLR. Even small changes in the tidal forcing at the seaward boundary can have a large impact on the magnitude and the direction of the tidally averaged sand transport. This hampers accurate predictions of sediment transport and morphodynamic changes in tidal systems, due to the uncertainty in the response of the tidal dynamics to the projected sea-level rise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alnæs MS, Blechta J, Hake J, Johansson A, Kehlet B, Logg A, Richardson C, Ring J, Rognes ME, Wells GN (2015) The FEniCS project version 1.5. Archi Numer Softw 3(100):9–23. https://doi.org/10.11588/ans.2015.100.20553

    Google Scholar 

  • Apecechea M I, Verlaan M, Zijl F, Le Coz C, Kernkamp H (2017) Effects of self-attraction and loading at a regional scale: a test case for the Northwest European Shelf. Ocean Dyn 67(6):729–749

    Google Scholar 

  • Barneveld H, Nicolai R, van Veen M, van Haaster S, Boudewijn T, de Jong J, van Didderen K, van de Haterd R, Middenveld P, Michielsen S, Van De Moortel I, Velez C, de Wilde E (2018) Analyserapport: T2015-rapportage Schelde-estuarium. Tech. Rep. PR3152.10, HKV, Bureau Waardenburg and Antea. https://www.vnsc.eu/publicaties/wetenschappelijke-publicaties-en-rapporten/1070-t2015-rapportage-schelde-estuarium-analyserapport.html, in Dutch

  • Beullens J, Vandenbruwaene W, Meire D, Verwaest T, Mostaert F (2017) Historische evolutie getij en morfologie schelde estuarium: Analyse morfologie en getij - data analyse. Tech. Rep. WL2016R14_147_2 Flanders Hydraulics Research, Antwerp, Belgium, in Dutch

  • Bi Q, Toorman E A (2015) Mixed-sediment transport modelling in scheldt estuary with a physics-based bottom friction law. Ocean Dyn 65(4):555–587

    Google Scholar 

  • Boelens T, Schuttelaars H, Schramkowski G, De Mulder T (2018) The effect of geometry and tidal forcing on hydrodynamics and net sediment transport in semi-enclosed tidal basins. Ocean Dyn 68(10):1285–1309

    Google Scholar 

  • Bolle A, Wang Z B, Amos C, De Ronde J (2010) The influence of changes in tidal asymmetry on residual sediment transport in the Western Scheldt. Cont Shelf Res 30(8):871–882

    Google Scholar 

  • Brouwer R, Schramkowski G, Mostaert F (2017) Geïdealiseerde processtudie van systeemovergangen naar hypertroebelheid: WP 1.3 Basismodel getij en zout. Tech. Rep. WL2017R13_103_3 Flanders Hydraulics Research, Antwerp, Belgium, in Dutch

  • Brouwer R L, Schramkowski G P, Dijkstra Y M, Schuttelaars H M (2018) Time evolution of estuarine turbidity maxima in well-mixed, tidally dominated estuaries: the role of availability-and erosion-limited conditions. J Phys Oceanogr 48(8):1629–1650

    Google Scholar 

  • Burchard H, Schuttelaars H M, Ralston D K (2018) Sediment trapping in estuaries. Ann Rev Mar Sci 10(1):371–395

    Google Scholar 

  • Chen M S, Wartel S, Van Eck B, Van Maldegem D (2005) Suspended matter in the scheldt estuary. Hydrobiologia 540(1-3):79– 104

    Google Scholar 

  • Chernetsky A S, Schuttelaars H M, Talke S A (2010) The effect of tidal asymmetry and temporal settling lag on sediment trapping in tidal estuaries. Ocean Dyn 60(5):1219–1241

    Google Scholar 

  • Chu A, Wang Z, De Vriend H (2015) Analysis on residual coarse sediment transport in estuaries. Estuar Coast Shelf Sci 163:194–205

    Google Scholar 

  • Cleveringa J (2013) Grootschalige sedimentbalans van de westerschelde. Project LTV Veiligheid en Toegankelijkheid LTV V&T-Rapport K-17, Arcadis (Emmeloord)

  • Coen L, De Maerschalck B, Plancke Y, Verwaest T, Mostaert F (2015) Sedimentstrategie beneden zeeschelde. deelrapport 1–opzet, validatie en scenarioberekeningen fase 1 met behulp van een numeriek sedimenttransportmodel. Tech. Rep. WL2015R14_025_1 Flanders Hydraulics Research, Antwerp, Belgium

  • de Swart H, Zimmerman J (2009) Morphodynamics of tidal inlet systems. Annual Rev Fluid Mech 41:203–229

    Google Scholar 

  • Dijkstra Y M, Brouwer R L, Schuttelaars H M, Schramkowski G P (2017) The iflow modelling framework v2. 4: a modular idealized process-based model for flow and transport in estuaries. Geosci Model Dev 10(7):2691–2713

    Google Scholar 

  • Donatelli C, Ganju N K, Zhang X, Fagherazzi S, Leonardi N (2018) Salt marsh loss affects tides and the sediment budget in shallow bays. J Gophys Res Earth Surface 123(10):2647–2662

    Google Scholar 

  • Dronkers J (1986) Tide-induced residual transport of fine sediment. Phys Shallow Estuaries Bays 16:228–244

    Google Scholar 

  • Fagherazzi S, Kirwan M L, Mudd S M, Guntenspergen G R, Temmerman S, D’Alpaos A, van de Koppel J, Rybczyk J M, Reyes E, Craft C et al (2012) Numerical models of salt marsh evolution: ecological, geomorphic, and climatic factors. Reviews of Geophysics 50(1)

  • Friedrichs C, Armbrust B, De Swart H (1998) Hydrodynamics and equilibrium sediment dynamics of shallow, funnel-shaped tidal estuaries. Physics of estuaries and coastal seas: 315–327

  • Friedrichs C T, Aubrey D G (1988) Non-linear tidal distortion in shallow well-mixed estuaries: a synthesis. Estuar Coast Shelf Sci 27(5):521–545

    Google Scholar 

  • Geuzaine C, Remacle J F (2009) Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities. Int J Numer Methods Eng 79(11):1309–1331

    Google Scholar 

  • Gräwe U, Burchard H, Müller M, Schuttelaars H M (2014) Seasonal variability in m2 and m4 tidal constituents and its implications for the coastal residual sediment transport. Geophys Res Lett 41(15):5563–5570

    Google Scholar 

  • Hertoghs R, Vereecken H, Boeckx L, Deschamps M, Mostaert F (2018) Vijfjarig overzicht van de tijwaarnemingen in het zeescheldebekken: Tijdvak 2011-2015. Tech. Rep. WL2018R16_035_1 Flanders Hydraulics Research, Antwerp, Belgium, in Dutch

  • Hoffmann M, Meire P (1997) De oevers langs de zeeschelde: inventarisatie van de huidige oeverstructuren. WATER-BRUSSELS- pp 131–137

  • Idier D, Paris F, Le Cozannet G, Boulahya F, Dumas F (2017) Sea-level rise impacts on the tides of the european shelf. Cont Shelf Res 137:56–71

    Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9781107415324. www.climatechange2013.org

    Google Scholar 

  • Kirwan M L, Megonigal J P (2013) Tidal wetland stability in the face of human impacts and sea-level rise. Nature 504(7478):53

    Google Scholar 

  • Kirwan M L, Temmerman S, Skeehan E E, Guntenspergen G R, Fagherazzi S (2016) Overestimation of marsh vulnerability to sea level rise. Nat Clim Change 6(3):253

    Google Scholar 

  • Kuijper K, Lescinski J (2013) Data analyses water levels ebb and flood volumes and bathymetries Western Scheldt. Tech. rep., International Marine & Dredging Consultants Deltares, Svašek Hydraulics BV, ARCADIS Nederland BV

  • Kumar M, Schuttelaars H M, Roos P C, Möller M (2016) Three-dimensional semi-idealized model for tidal motion in tidal estuaries. Ocean Dyn 66(1):99–118

    Google Scholar 

  • Li C, O’Donnell J (2005) The effect of channel length on the residual circulation in tidally dominated channels. J Phys Oceanogr 35(10):1826–1840

    Google Scholar 

  • Li C, Valle-Levinson A (1999) A two-dimensional analytic tidal model for a narrow estuary of arbitrary lateral depth variation: The intratidal motion. J Geophys Res Oceans 104(C10):23,525–23,543

    Google Scholar 

  • Lorentz H (1922) Het in rekening brengen van den weerstand bij schommelende vloeistofbewegingen. De ingenieur

  • Maris T, Meire P (2016) Omes rapport 2015. Onderzoek naar de gevolgen van het Sigmaplan, baggeractiviteiten en havenuitbreiding in de Zeeschelde op het milieu Universiteit Antwerpen: Antwerpen

  • Meire P, Van Dyck M (2014) Naar een duurzaam rivierbeheer: hoe herstellen we de ecosysteemdiensten van rivieren? De Schelde als blauwe draad. University Press Antwerp

  • Müller M, Cherniawsky J Y, Foreman M G, von Storch J S (2014) Seasonal variation of the M2 tide. Ocean Dyn 64(2):159–177

    Google Scholar 

  • Murray A B (2003) Contrasting the goals, strategies, and predictions associated with simplified numerical models and detailed simulations. Prediction in geomorphology, pp 151–165

  • Nnafie A, Van Oyen T, De Maerschalck B, Plancke Y, Verwaest T, Mostaert F (2016) Modeling effects of geometry, initial bathymetry and sediment availability on the morphodynamic evolution of the scheldt mouth area. Tech. Rep. WL2016R14_094 Flanders Hydraulics Research, Antwerp, Belgium

  • Nnafie A, Van Oyen T, De Maerschalck B, van der Vegt M, Wegen MVD (2018) Estuarine channel evolution in response to closure of secondary basins: an observational and morphodynamic modeling study of the western scheldt estuary. J Gophys Res Earth Surface 123(1):167–186

    Google Scholar 

  • Pickering M, Horsburgh K, Blundell J, Hirschi J M, Nicholls R J, Verlaan M, Wells N (2017) The impact of future sea-level rise on the global tides. Cont Shelf Res 142:50–68

    Google Scholar 

  • Pickering M, Wells N, Horsburgh K, Green J (2012) The impact of future sea-level rise on the european shelf tides. Cont Shelf Res 35:1–15

    Google Scholar 

  • Ridderinkhof W, de Swart H, van der Vegt M, Alebregtse N, Hoekstra P (2014) Geometry of tidal inlet systems: a key factor for the net sediment transport in tidal inlets. J Geophys Res Oceans 119(10):6988–7006

    Google Scholar 

  • Schuttelaars H, de Swart H (2000) Multiple morphodynamic equilibria in tidal embayments. J Geophys Res Oceans (1978–2012) 105(C10):24,105–24,118

    Google Scholar 

  • Taverniers E, Plancke Y, Mostaert F (2013) Moneos-jaarboek monitoring wl-basisboek: Overzicht monitoring hydrodynamiek en fysische parameters zoals door wl in het zeescheldebekken gemeten-uitleggend basisboek met algemene situering, methodologie en achtergrond. WL Rapporten

  • Temmerman S, Govers G, Wartel S, Meire P (2004) Modelling estuarine variations in tidal marsh sedimentation: response to changing sea level and suspended sediment concentrations. Mar Geol 212(1-4):1–19

    Google Scholar 

  • Ter Brake M C, Schuttelaars H M (2010) Modeling equilibrium bed profiles of short tidal embayments. Ocean Dyn 60(2):183–204

    Google Scholar 

  • Ter Brake M C, Schuttelaars H M (2011) Channel and shoal development in a short tidal embayment: an idealized model study. J Fluid Mech 677:503–529

    Google Scholar 

  • Townend I, Pethick J (2002) Estuarine flooding and managed retreat. Philosophical Transactions of the Royal Society of London Series A: Mathematical. Phys Eng Sci 360(1796):1477–1495

    Google Scholar 

  • Van Braeckel A, Piesschaert F, Van den Bergh E (2007) Historische analyse van de Zeeschelde en haar getijdegebonden zijrivieren: 19e eeuw tot heden. INBO

  • van der Spek A J F (1994) Large-scale evolution of Holocene tidal basins in the Netherlands. Faculteit Aardwetenschappen, phD-thesis, Universiteit Utrecht

    Google Scholar 

  • Van der Werf J, Briere C (2013) The influence of morphology on tidal dynamics and sand transport in the Scheldt estuary. Tech. rep., The Netherlands: Consortium Deltares IMDC, Svašek, Arcadis

  • van Maren D S, Winterwerp J C, Vroom J (2015) Fine sediment transport into the hyper-turbid lower ems river: the role of channel deepening and sediment-induced drag reduction. Ocean Dyn 65(4):589–605

    Google Scholar 

  • Van Rijn L (2013) Tidal phenomena in the scheldt estuary, part 2. Tech. rep., International Marine & Dredging Consultants Deltares, Svašek Hydraulics BV, ARCADIS Nederland BV

  • Verlaan M, De Kleermaeker S, Buckman L et al (2015) Glossis: Global storm surge forecasting and information system. In: Australasian Coasts & Ports Conference 2015: 22nd Australasian Coastal and Ocean Engineering Conference and the 15th Australasian Port and Harbour Conference, Engineers Australia and IPENZ, p 229

  • Verlaan P A J (1998) Mixing of marine and fluvial particles in the scheldt estuary. PhD thesis, TU Delft

    Google Scholar 

  • Vroon J, Storm C, Coosen J (1997) Westerschelde, stram of struis? eindrapport van het project oostwest, een studie naar de beïnvloeding van fysische en verwante biologische patronen in een estuarium. Tech. Rep. Rapport RIKZ-97.023 Rijkswaterstaat, Rijksinstituut Kust en Zee, Middelburg, in Dutch

  • Wahl T, Haigh I D, Woodworth P L, Albrecht F, Dillingh D, Jensen J, Nicholls R J, Weisse R, Wöppelmann G (2013) Observed mean sea level changes around the north sea coastline from 1800 to present. Earth Sci Rev 124:51–67

    Google Scholar 

  • Wang Z, Hoekstra P, Burchard H, Ridderinkhof H, De Swart H, Stive M (2012) Morphodynamics of the Wadden Sea and its barrier island system. Ocean & Coastal Management 68:39–57

    Google Scholar 

  • Wang Z, Jeuken M, Gerritsen H, De Vriend H, Kornman B (2002) Morphology and asymmetry of the vertical tide in the Westerschelde estuary. Cont Shelf Res 22(17):2599–2609

    Google Scholar 

  • Ward S L, Green J M, Pelling H E (2012) Tides, sea-level rise and tidal power extraction on the european shelf. Ocean Dyn 62(8):1153–1167

    Google Scholar 

  • Wei X, Kumar M, Schuttelaars H M (2018) Three-dimensional sediment dynamics in well-mixed estuaries: importance of the internally generated overtide, spatial settling lag, and gravitational circulation. J Geophys Res Oceans 123(2):1062–1090

    Google Scholar 

  • Zimmerman J (1982) On the Lorentz linearization of a quadratically damped forced oscillator. Phys Lett A 89(3):123–124

    Google Scholar 

Download references

Acknowledgments

The first author is a doctoral research fellow of IWT-Vlaanderen (project IWT 141275). Dr. George Schramkowski (Flanders Hydraulics Research) is acknowledged for providing the tidal constituents of the validation data.

Funding

This work was also financially supported by the Flemish-Dutch Scheldt Commission (VNSC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Boelens.

Additional information

Responsible Editor: Birgit Andrea Klein

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

A Tidal asymmetry

The tidal asymmetry affects the sediment transport by means of the advective terms. So, if we consider only the advective contributions to the sediment transport, we get

$$ q_{u} \sim \left\langle uC\right\rangle $$
(A.1)

Looking at the dimensionless equation for the sediment concentration Eq. 2.10 and considering an approximate balance between erosion and deposition, assuming \(\beta \sim 1\), we find that

$$ C \approx |\mathbf{u}|^{2}. $$
(A.2)

In this case, the four contributions to the sediment transport \(q_{u,\text {adv}}^{M_{2},\text {int}}\), \(q_{u,\text {adv}}^{M_{4},\text {int}}\), \(q_{u,\text {adv}}^{M_{2},\text {ext}}\) and \(q_{u,\text {adv}}^{M_{4},\text {ext}}\) are simplified to the following two terms, as was explained in Boelens et al. (2018),

$$ \begin{array}{@{}rcl@{}} q_{u,\text{adv}}^{\text{int}} & \sim& U_{M_{2}}^{2}U_{M_{4}}^{\text{int}}\cos(2\phi_{M_{2}}-\phi_{M_{4}}^{\text{int}})\\ &=& U_{M_{2}}^{3}\frac{U_{M_{4}}^{\text{int}}}{U_{M_{2}}}\cos(2\phi_{M_{2}}-\phi_{M_{4}}^{\text{int}}) \end{array} $$
(A.3)
$$ \begin{array}{@{}rcl@{}} q_{u,\text{adv}}^{\text{ext}} & \sim& U_{M_{2}}^{2}U_{M_{4}}^{\text{ext}}\cos(2\phi_{M_{2}}-\phi_{M_{4}}^{\text{ext}})\\ &=& U_{M_{2}}^{3}\frac{U_{M_{4}}^{\text{ext}}}{U_{M_{2}}}\cos(2\phi_{M_{2}}-\phi_{M_{4}}^{\text{ext}}). \end{array} $$
(A.4)

These simplifications illustrate that only taking amplitude asymmetry into account would imply that the system is flood dominant, according to the definition of Friedrichs and Aubrey (1988) (as can be seen in Fig. 12a and b), and sediment would be transported in the landward direction throughout the channel. However, our model, which also includes other effects, such as temporal and spatial settling lag (de Swart and Zimmerman 2009), shows sediment transport in the seaward direction in the seaward part of the channel. Therefore, other transport mechanisms, included in Eq. 2.10, are essential to consider. This also shows that the widely used proxy from Friedrichs and Aubrey (1988), who only consider short channels (L < 15km), is not valid for long systems, such as the Scheldt estuary.

Fig. 12
figure 12

Amplitude ratio and phase difference of the M2 and M4 tidal constituent of the longitudinal velocity. The parameters are shown for the internally generated (int, orange line) and the externally prescribed (ext, green line) M4 component, as well as for the combined (full, blue lines) M4 component

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boelens, T., Schuttelaars, H., Plancke, Y. et al. Historical and future development of the tidally averaged transport of sandy sediments in the Scheldt estuary: a 2D exploratory model. Ocean Dynamics 70, 481–504 (2020). https://doi.org/10.1007/s10236-019-01339-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-019-01339-2

Keywords

Navigation