Skip to main content

Advertisement

Log in

Water intrusions and particle signatures in the Black Sea: a Biogeochemical-Argo float investigation

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

Continuous observations during 3 years with a vertical resolution of 1 dbar from two Bio-Argo floats in the Black Sea that were equipped with oxygen optodes, chlorophyll fluorometers, and backscattering sensors are analyzed. The particle backscattering coefficient, b bp provides a proxy for the concentration of suspended particles. The observations clearly identify thermal and b bp intrusions down to ~700–800 m in the Bosporus inflow area. In this area, b bp is more than five times larger than elsewhere, which could indicate bacterial abundance and possible biological involvement in the precipitation of Mn-containing particles. The b bp anomalies become much shallower than the temperature anomalies with increasing distance to the east of the strait. Their maxima are located between the onset of the suboxic zone and the upper part of the anoxic layer. Unlike well-known intrusions that are caused by inflow, open ocean intrusions are shallower and often characterized by multiple layers of backscatter maxima with thicknesses of only 15–20 m. The ratio between backscattering coefficients measured at two wavelengths, which gives a proxy for particle size, shows that the relative amount of larger size particles in the anoxic layer increases with depth. The particle concentrations and their size distribution display different vertical variability, which indicates the complex transformation of biological matter. The lower concentration of particles and lower chlorophyll-a during the extremely warm 2016 reveals an overall positive correlation between the two properties. The trends in the particle backscattering coefficient in the suboxic zone during 2013–2016 could indirectly reveal a biogeochemical response to temperature changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson GC (1969) Subsurface chlorophyll maximum in the Northeast Pacific Ocean. Limnol Oceanogr 14(3):386–391

    Article  Google Scholar 

  • Balch WM, Drapeau D, Fritz J, Bowler B, Nolan J (2001) Optical backscattering in the Arabian Sea-continuous underway measurements of particulate inorganic and organic carbon. Deep Sea Research I 48:2423–2452

    Article  Google Scholar 

  • Blatov, A. S., N. P. Bulgakov, V. A. Ivanov, A. N. Kosarev, and V. S. Tujilkin (1984), Variability of hydrophysical fields in the Black Sea [in Russian], 240 pp., Gidrometeoizdat, Leningrad.

  • Bishop JKB, Wood T J (2009) Year-round observations of carbon biomass and flux variability in the Southern Ocean. Glob Biogeochem Cycles 23, GB2019. doi:10.5194/bg-11-5381-2014

  • Boss E, Pegau WS (2001) The relationship of light scattering at an angle in the backward direction to the backscattering coefficient. Appl Opt 40:5503–5507

    Article  Google Scholar 

  • Boss E, Swift D, Taylor L, Brickley P, Zaneveld R, Riser S, Perry MJ, Strutton PG (2008) Observations of pigment and particle distributions in the western North Atlantic from an autonomous float and ocean color satellite. Limnol Oceanogr Methods 53:2112–2122

    Article  Google Scholar 

  • Brewer, P.G., and D.W. Spencer (1974). Distribution of some trace elements in Black Sea and their flux between dissolved and particulate phases. In: Degens, E.T., Ross, D.A. (Eds.), The Black Sea - Geology, Chemistry and Biology. Am. Assoc. Pet. Geol. Mem. 20, 137–143

  • Claustre, H., et al. (2010), Bio-optical profiling floats as new observational tools for biogeochemical and ecosystem studies, in Proceedings of the “OceanObs’09: Sustained Ocean Observations and Information for Society” Conference, Venice, Italy, 21–25 Sep., vol. 2, edited by J. Hall, D. E. Harrison, and D. Stammer, ESA Publ. WPP-306, doi:105270/OceanObs09.cwp.17

  • Cociasu, A., V. Diaconu, L. Popa, I. Nae, L. Buga, L. Dorogan & V. Malciu, 1997. Nutrient stock of the Romanian shelf of the Black Sea in the last three decades. In E. Ozsoy & A. Mikaelyan (eds), Sensitivity to change: Black Sea, Baltic and North Sea. NATO ASI Series, Kluwer Academic Publishers 27: 49–63.

  • Codispoti, L.A, G.E. Friederich, J.W. Murray, and C M Sakamoto, Chemical variability in the Black Sea: implications of continuous vertical profiles that pmetrated the oxic/anoxic interface, Deep Sea Res., 38, suppl.,S 691-S710, 1991

  • DeVries T, Liang J-H, Deutsch C (2014) A mechanistic particle flux model applied to the oceanic phosphorus cycle. Biogeosciences 11:5381–5398. doi:10.5194/bg-11-5381-2014

    Article  Google Scholar 

  • Fuchsman, C.A., Murray, J.W., and Staley, J.T. (2012) Stimulation of autotrophic denitrification by intrusions of the Bosporus Plume into the anoxic Black Sea. Frontiers in Aquatic Microbiology 3: 257.Gregg, M. C., and E. Ozsoy, Mixing on the Black Sea shelf north of the Bosphorus, Geophys. Res. Lett., 26, 1869–1872, 1999

  • Gregg MC, Özsoy E (1999) Mixing on the Black Sea shelf north of the Bosphorus. Geophys Res Lett 26:1869–1872

  • Grégoire M, Soetaert KER (2010) Carbon, nitrogen, oxygen and sulfide budgets in the Black Sea: a biogeochemical model of the whole water column coupling the oxic and anoxic parts. Ecol Model 221:2287–2301

    Article  Google Scholar 

  • Gruber N (2011) Warming up, turning sour, losing breath: ocean biogeochemistry under global change. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences 369(1943):1980–1996

    Article  Google Scholar 

  • Huot Y, Morel A, Twardowski MS, Stramski D, Reynolds RA (2008) Particle optical backscattering along a chlorophyll gradient in the upper layer of the eastern South Pacific Ocean. Biogeosciences 5:495–507

    Article  Google Scholar 

  • International Ocean-Color Coordinating Group (IOCCG) (2011) Bio-optical sensors on Argo floats, vol 11, edited by H. Claustre, Darthmouth

    Google Scholar 

  • Jannasch HW, Wirsen CO, Molyneaux S (1991) Chemoautotropic sulfur oxidizing bacteria from the Black Sea. Deep-Sea Res 38(Suppl. 2):S1105–S1120

    Article  Google Scholar 

  • Johnson KS, Claustre H (2016) Bringing biogeochemistry into the Argo age. Eos, 97, doi:10.1029/2016EO062427

  • Johnson KS, Berelson WM, Boss ES, Chase Z, Claustre H, Emerson SR, Gruber N, Körtzinger A, Perry MJ, Riser SC (2009) Observing biogeochemical cycles at global scales with profiling floats and gliders: prospects for global array. Oceanography 22:216–225

    Article  Google Scholar 

  • Jørgensen BB, Fossing H, Wirsen CO, Jannasch HW (1991) Sulfide oxidation in the anoxic Black Sea chemocline. Deep-Sea Res 38(Suppl. 2):S1083–S1103

    Article  Google Scholar 

  • Karl DM, Knauer GA (1991) Microbial production and particle flux in the upper 350 m of the Black Sea. Deep-Sea Res 38(Suppl. 2):S921–S942

    Article  Google Scholar 

  • Kempe, S., Diercks, A. R., Liebezeit, G., & Prange, A. (1991), Geochemical and structural aspects of the pycnocline in the Black Sea (R/V Knorr 134–8 Leg 1, 1988). In Black Sea Oceanography (pp. 89–110). Springer Netherlands

  • Konovalov SK, Murray JW (2001) Variations in the chemistry of the Black Sea on a time scale of decades (1960–1995). J Mar Syst 31:217–243

    Article  Google Scholar 

  • Konovalov SK, Luther GW III, Friederich GE, Nuzzio DB, Tebo BM, Murray JW, Oguz T, Glazer B, Trouwborst RE, Clement B, Murray KJ, Romanov AS (2003) Lateral injection of oxygen with the bosporus plume fingers of oxidizing potential in the Black Sea. Limnol Oceanogr 48:2369–2376

    Article  Google Scholar 

  • Konovalov SK, Murray JW, Luther GW III (2005) Basic processes of Black Sea biogeochemistry. Oceanography 18:24–35

    Article  Google Scholar 

  • Konovalov S, Murray J, Luther G, Tebo B (2006) Processes controlling the redox budget for the oxic/anoxic water column of the Black Sea. Deep-Sea Res Pt II 53:1817–1841

    Article  Google Scholar 

  • Korotaev G, Oguz T, Riser S (2006) Intermediate and deep currents of the Black Sea obtained from autonomous profiling floats. Deep Sea Res Pt II 53:1901–1910

    Article  Google Scholar 

  • Kostadinov TS, Siegel DA, Maritorena S (2009) Retrieval of the particle size distribution from satellite ocean color observations. J Geophys Res 114:C09015

    Article  Google Scholar 

  • Latif MA, Ozsoy E, Oguz T, Unluata U (1991) Observations of the Mediterranean inflow into the Black Sea. Deep-Sea Res 38(Suppl 2):5711–5723 1991

    Google Scholar 

  • Lewis BL, Landing WM (1991) The biogeochemistry of manganese and iron in the Black Sea. Deep-Sea Res 38(Suppl. 2A):S773–S804

    Article  Google Scholar 

  • Loisel H, Morel A (1998) Light scattering and chlorophyll concentration in case 1 waters: a reexamination. Limnol Oceanogr 43:847–858

    Article  Google Scholar 

  • Loisel H, Nicolas JM, Sciandra A, Stramski D, Poteau A (2006) Spectral dependency of optical backscattering by marine particles from satellite remote sensing of the global ocean. Journal of Geophysical Research-Oceans C09024. doi:10.1029/2005JC003367

  • Lorthiois T, Doxaran D, Chami M (2012) Daily and seasonal dynamics of suspended particles in the Rhône River plume based on remote sensing and field optical measurements. Geo-Mar Lett 32(2):89–102

    Article  Google Scholar 

  • Mignot A, Claustre H, Uitz J, Poteau A, D’Ortenzio F, Xing X (2014) Understanding the seasonal dynamics of phytoplankton biomass and the deep chlorophyll maximum in oligotrophic environments: a Bio-Argo float investigation. Global Biogeochem Cycle 28:856–876. doi:10.1002/2013GB004781

    Article  Google Scholar 

  • Mikaelyan AS, Pautova LA, Chasovnikov VK, Mosharov SA, Silkin VA (2015) Alternation of diatoms and coccolithophores in the north-eastern Black Sea: a response to nutrient changes. Hydrobiologia 755(1):89–105

    Article  Google Scholar 

  • Morel A, Ahn YH (1991) Optics of heterotrophic nanoflagellates and ciliates: a tentative assessment of their scattering role in oceanic waters compared to those of bacterial and algal cells. J Mar Res 49:177–202

    Article  Google Scholar 

  • Morgan JA, Quinby HL, Ducklow HW (2006) Bacterial abundance and production in the western Black Sea. Deep-Sea Res II 53:1945–1960

    Article  Google Scholar 

  • Murray JW, Jannasch HW, Honjo S, Anderson RF, Reeburgh WS, Top Z, Friederich GE, Codispoti LA, Izdar E (1989) Unexpected changes in the oxic/anoxic interface in the Black Sea. Nature 338:411–413

    Article  Google Scholar 

  • Murray JW, Top Z, Ozsoy E (1991) Hydrographic properties and ventilation of the Black Sea. Deep-Sea Res 38:S663–S689

    Article  Google Scholar 

  • Murray, J. W., L. A. Codispoti, and G. E. Friederich (1995), Oxidationreduction environments: the suboxic zone in the Black Sea, in Aquatic chemistry: interfacial and interspecies processes, Adv. Chem. Ser., vol. 224, edited by C. P. Huang, C. R. OMelia, and J. J. Morgan, pp. 157–176, American Chemical Society, Washington, D.C.

  • Oguz T, Dippner JW, Kaymaz Z (2006) Climatic regulation of the Black Sea hydro-meteorological and ecological properties at interannual-to-decadal time scales. J Marine Systems 60:235–254

    Article  Google Scholar 

  • Organelli E, Coauthors (2016) A novel near-real-time quality control procedure for radiometric profiles measured by Bio-Argo floats: protocols and performances. J Atmos Ocean Technol 33:937–951. doi:10.1175/JTECH-D-15-0193.1

    Article  Google Scholar 

  • Özsoy E, Unluata U, Top Z (1993) The evolution of Mediterranean water in the Black Sea: interior mixing and material transport by double diffusive intrusions. Prog Oceanogr 31(3):275–320

    Article  Google Scholar 

  • Ozsoy E, Iorio DD, Gregg M, Backhaus J (2001) Mixing in the Bosphorus Strait and the Black Sea continental shelf: observations and a model of the dense water outflow. J Mar Sys 31:99–135

    Article  Google Scholar 

  • Röttgers R, Koch BP (2012) Spectroscopic detection of a ubiquitous dissolved pigment degradation product in subsurface waters of the global ocean. Biogeosciences 9:2585–2596

    Article  Google Scholar 

  • Rozanov AG, Neretin LN, Volkov II (1998) Redox nepheloid layer (RNL) of the Black Sea: its location, composition and origin. In: Ivanov LI, Oguz T (eds) Ecosystem modeling as a management tool for the Black Sea, vol 1. Kluwer Academic Publishers, Amsterdam, pp 77–91

    Google Scholar 

  • Schmechtig, C., Claustre, H., Poteau, A., D’Ortenzio, F. (2014), Bio-Argo quality control manual for the chlorophyll-A concentration. http://dx.doi.org/10.13155/35385

  • Schmechtig, C., Poteau, A., Claustre, H., D’Ortenzio, F., Boss, E. (2015a), Processing Bio-Argo chlorophyll-a concentration at the DAC level. http://dx.doi.org/10.13155/39468

  • Schmechtig, C., Poteau, A., Claustre, H., D’Ortenzio, F., Dall’Olmo, G., Boss, E. (2015b), Processing Bio-Argo particle backscattering at the DAC level. http://dx.doi.org/10.13155/39459

  • Shaffer G (1986) Phosphorus pumps and shuttles in the Black Sea, Letters to Nature. 321:515–517

  • Spencer DW, Brewer PG (1971) Vertical advection diffusion and redox potentials as controls on the distribution of manganese and other trace metals dissolved in waters of the Black Sea. J Geophys Res 76:5877–5892

    Article  Google Scholar 

  • Stanev EV (2005) Understanding Black Sea dynamics: overview of recent numerical modelling. Oceanography 18:56–75

    Article  Google Scholar 

  • Stanev EV, Simeonov JA, Peneva EL (2001) Ventilation of Black Sea pycnocline by the Mediterranean plume. J Mar Syst 31:77–97

    Article  Google Scholar 

  • Stanev EV, Staneva J, Bullister JL, Murray JW (2004) Ventilation of the Black Sea pycnocline. Parameterization of convection, numerical simulations and validations against observed chlorofluorocarbon data. Deep-Sea Res 51:2137–2169

    Article  Google Scholar 

  • Stanev EV, He Y, Grayek S, Boetius A (2013) Oxygen dynamics in the Black Sea as seen by Argo profiling floats. Geophys Res Lett 40(3085–3090). doi:10.1002/grl.50606

  • Stanev EV, He Y, Staneva J, Yakushev E (2014) Mixing in the Black Sea detected from the temporal and spatial variability of oxygen and sulfide—Argo float observations and numerical modelling. Biogeosciences 11(5707–5732):2014. doi:10.5194/bg-11-5707-2014

    Google Scholar 

  • Stramski D, Kiefer DA (1991) Light scattering by microorganisms in the open ocean. Prog Oceanogr 28:343–383

    Article  Google Scholar 

  • Sullivan JM, Twardowski MS (2009) Angular shape of the volume scattering function in the backwards direction. Appl Opt 48(35):6811–6819

    Article  Google Scholar 

  • Tebo B (1991) Manganese (II) oxidation in the suboxic zone of the Black Sea. Deep-Sea Res II 441(38):S883–S905

  • Wakeham SG, Amann R, Freeman KH, Hopmans EC, Jørgensen BB, Putnam IF, Schouten S, Sinninghe Damsté JS, Talbot HM, Woebken D (2007) Microbial ecology of the stratified water column of the Black Sea as revealed by a comprehensive biomarker study. Org Geochem 38(12):2070–2097

    Article  Google Scholar 

  • White G., M. Relander, J. Postal and J. W. Murray (1989), Hydrographic data from the 1988 Black Sea Oceanographic Expedition, Special report (School of Oceanography, College of Ocean and Fishery Sciences, University of Washington), no 109, 34pp

  • Xing, X., Morel, A., Claustre, H., D'Ortenzio, F., and A. Poteau (2012), Combined processing and mutual interpretation of radiometry and fluorometry from autonomous profiling Bio-Argo floats: 2. Colored dissolved organic matter absorption retrieval. Journal of Geophysical Research, Vol. 117, No. C4, C04022, http://dx.doi.org/10.1029/2011JC007632

  • Xing X, Claustre H, Uitz J, Mignot A, Poteau A, Wang H (2014) Seasonal variations of bio-optical properties and their interrelationships observed by Bio-Argo floats in the subpolar North Atlantic. J Geophys Res Oceans 119. doi:10.1002/2014JC010189

  • Yakushev EV, Pollehne F, Jost G, Kuznetsov I, Schneider B, Umlauf L (2007) Analysis of the water column oxic/anoxic interface in the Black and Baltic seas with a numerical model. Mar Chem 107:388–410

    Article  Google Scholar 

  • Yilmaz A, Tuğrul S, Polat C, Ediger D, Çoban Y, Morkoç E (1998) On the production, elemental composition (C, N, P) and distribution of photosynthetic organic matter in the southern Black Sea. Hydrobiologia 363(1):141–155

    Google Scholar 

  • Yilmaz A, Coban-Yildiz Y, Telli-Karakoc F, Bologa A (2006) Surface and mid-water sources of organic carbon by photoautotrophic and chemoautotrophic production in the Black Sea. Deep Sea Research II 53:1988–2004

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to V. Slabakova for the work that was performed during the deployment of the floats and to P.M. Poulain for coordinating the Argo activities in the Black Sea. We are grateful to J. Murray for his useful suggestions on improving the paper. EVS acknowledges support from the EC grant 312642 and Hervé Claustre from the European Research Council for the Remotely Sensed Biogeochemical Cycles in the Ocean (remOcean) project (grant agreement 246777). Data that support the analysis and conclusions can be found at http://www.ifremer.fr/co-argoFloats/float?detail=false&ocean=A&lang=en&techChart=false&ptfCode=7900591 and http://www.ifremer.fr/co-argoFloats/float?detail=false&ocean=A&lang=en&techChart=false&ptfCode=7900592.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emil Vassilev Stanev.

Additional information

Responsible Editor: Dieter Wolf-Gladrow

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stanev, E., Grayek, S., Claustre, H. et al. Water intrusions and particle signatures in the Black Sea: a Biogeochemical-Argo float investigation. Ocean Dynamics 67, 1119–1136 (2017). https://doi.org/10.1007/s10236-017-1077-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-017-1077-9

Keywords

Navigation