Skip to main content
Log in

Influence of summer conditions on surface water properties and phytoplankton productivity in embayments of the South Shetland Islands

  • Review
  • Published:
Polar Biology Aims and scope Submit manuscript

A Correction to this article was published on 27 June 2018

This article has been updated

Abstract

Phytoplankton productivity in glaciomarine embayments of the West Antarctic Peninsula is constrained because of extensive thermohaline variability, which is due to seasonal sea-ice and glacial melting. To determine whether or not this affects the biology of the water column, we explored the influence of surface water properties on phytoplankton productivity in four embayments of the South Shetland Islands (SSI) during late summer of 2013. We analyzed hydrographic, climatic, and primary productivity satellite data (wind velocity, sea-ice cover, and chlorophyll-a), in situ CTD measurements of physical and chemical characteristics, new estimates of net primary production (NPP), and surface water samples for chlorophyll-a, nutrients, biogenic silica, and plankton composition. Sea-ice cover at the SSI was ~ 20% during February. Long-term satellite wind data (2010–2015) showed that during February 2013 the average wind velocity was ~ 2 m s−1 higher than the long-term mean with two low sea surface temperature events occurring simultaneously at all sites. The CTD profiles did not show vertical salinity changes, although salinity was highly correlated with the percentage of integrated nanoplankton Chl-a, which represented > 50% of the total integrated Chl-a in all the embayments. Phytoplankton was the major contributor to the integrated carbon biomass of the upper water column, where centric diatoms predominated. The contribution of microzooplankton and bacterioplankton at the different sites explained NPP values and the trophic mode at each site. Specifically, NPP at Fildes Bay exhibited an autotrophic productivity mode in contrast to Collins Bay, where both heterotrophic and autotrophic modes alternated, mainly due to weekly changes in community respiration rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

https://seaice.uni-bremen.de/sea-ice-concentration/information. a February 2013 mean. Color scale to the right indicates percentage. b Monthly long-term mean (2013–2015) extracted from a grid rectangle (2° in latitude × 4 ° in longitude) centered in the glaciomarine embayments of the SSI, except Deception Island where no pixel with data was found. (Color figure online)

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

https://legacy.bas.ac.uk/met/gjma/sam.html. The shaded pink bars show the sampling periods. (Color figure online)

Similar content being viewed by others

Change history

  • 27 June 2018

    This correction serves to provide the correct rendering of Table 3 with its respective symbols corrected to superscript (provided below and not in the original article). Additionally with this correction the author would like to bring to attention the revision of the original article, correcting typographical errors in the Abstract, Tables 1, 2, 3 and Figure 7. For the abstract this entailed the changing of ‘productivityon’ to simply ‘productivity’. For Tables 1, 2 and 3, this entailed the changing of “five” to “four”. And for Fig. 7 this entailed changing the footnote from “at the five of the SSI” to “at the four stations of this study”. The author and the copyeditors apologize for the mistakes in the original version of this article. The original article has been corrected.

References

  • Abram NJ, Mulvaney R, Wolff EW, Triest J, Kipfstuhl S, Trusel D, Vimeux F, Fleet L, Arrowsmith C (2013) Acceleration of snow melt in an Antarctic Peninsula ice core during the twentieth century. Nat Geosci 6:404–411

    Article  CAS  Google Scholar 

  • Amos AF (2001) A decade of oceanographic variability in summertime near Elephant Island, Antarctica. J Geophys Res 106:22401–22423

    Article  Google Scholar 

  • Ardelan MV, Holm-Hansen O, Hewes CD, Reiss CS, Silva NS, Dulaiova H, Steinnes E, Sakshaug E (2010) Natural iron enrichment around the Antarctic Peninsula in the Southern Ocean. Biogeosciences 7:11–25

    Article  CAS  Google Scholar 

  • Arrigo KR, Worthen D, Lizotte M, Dixon P, Dieckmann G (1997) Primary production in Antarctic Sea Ice. Science 276(5311):394–397

    Article  CAS  Google Scholar 

  • Arrigo KR, Worthen DL, Schnell A, Lizotte MP (1998) Primary production in Southern Ocean waters. J Geophys Res 103:15587–15600

    Article  Google Scholar 

  • Azam F (1998) Microbial control of oceanic carbon flux: the plot thickens. Science 280:694–696

    Article  CAS  Google Scholar 

  • Beers J, Stewart G (1970) Numerical abundance and estimated biomass of microzooplankton. Part VI. Bull Scripps Inst Oceanogr Univ Calif 17:67–87

    Google Scholar 

  • Bentamy A, Fillon D (2012) Gridded surface wind fields from Metop/ASCAT measurements. Int J Remote Sens 33:1729–1754

    Article  Google Scholar 

  • Blindow N, Suckro SK, Ruckamp M, Braun M, Schindler M, Breuer B, Saurer H, Simoes JC, Lange MA (2010) Geometry and thermal regime of the King George Island ice cap, Antarctica, from GPR and GPS. Ann Glaciol 51:103–109

    Article  Google Scholar 

  • Blondeau-Patissier D, Gower JFR, Dekker AG, Phinn SR, Brandoc VE (2014) A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans. Prog Oceanogr 123:123–144

    Article  Google Scholar 

  • Bodungen BV, Wunsch M, Fürderer H (1991) Sampling and analysis of suspended and sinking particles in the northern North Atlantic. In: Hurd DC, Spencer DW (eds) Marine particles: analysis and characterization. American Geophysical Union, Washington DC. https://doi.org/10.1029/GM063p0047

    Chapter  Google Scholar 

  • Boltovskoy D (1999) South Atlantic Zooplankton. Backhuys Publishers, Leiden, p 1706

    Google Scholar 

  • Carrasco J (2007) Climatologia de la Peninsula Antartica y de la base Presindente Eduardo Frei Montalva. Direccion Meteorologica de Chile

  • Chin TM, Vazquez J, Armstrong E (2013) Algorithm theoretical basis document: a multi-scale, high-resolution analysis of global sea surface temperature. Jet Propulsion Laboratory, Pasadena

    Google Scholar 

  • Cho BC, Azam F (1990) Biogeochemical significance of bacterial biomass in the ocean’s euphotic zone. Mar Ecol Prog Ser 63:253–259

    Article  CAS  Google Scholar 

  • Cook AJ, Fox AJ, Vaughan DG, Ferrigno JG (2005) Retreating glacier fronts on the Antarctic Peninsula over the past half-century. Science 308:541–544

    Article  CAS  Google Scholar 

  • Cupp E (1943) Marine plankton diatoms of the west coast of North America, vol 5. University of California Press, Berkeley

    Google Scholar 

  • Deppeler SL, Davidson AT (2017) Southern Ocean Phytoplankton in a changing climate. Front Mar Sci 4:40. https://doi.org/10.3389/fmars.2017.00040

    Article  Google Scholar 

  • Ducklow HW, Baker K, Martinson DG, Quetin LB, Ross RM, Smith RC, Stammerjohn SE, Vernet M, Fraser W (2007) Marine pelagic ecosystems: the West Antarctic Peninsula. Philos Tr Soc B 362:67–94

    Article  Google Scholar 

  • Edler L (1979) Recommendations for marine biological studies in the Baltic sea. Phytoplankton and Chlorophyll. Balt Mar Biol 5:1–38

    Google Scholar 

  • Fuhrman JA, Azam F (1982) Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: evaluation and field results. Mar Biol 66(2):109–120

    Article  Google Scholar 

  • García Muñoz C, Lubiàn L, García C, Marrero-Díaz A, Sangrà P, Vernet M (2013) A mesoscale study of phytoplankton assemblages around the South Shetland Islands (Antarctica). Polar Biol 36:1107–1123

    Article  Google Scholar 

  • Garibotti IA, Vernet M, Ferrario ME (2005) Annually recurrent phytoplanktonic assemblages during summer in the seasonal ice zone west of the Antarctic Peninsula (Southern Ocean). Deep-Sea Res Part I 52:1823–1841

    Article  Google Scholar 

  • Gonçalves-Araujo R, Silva de Souza M, Tavano VM, Eiras Garca CA (2015) Influence of oceanographic features on spatial and interannual variability of phytoplankton in the Bransfield Strait, Antarctica. J Mar Syst 142:1–15

    Article  Google Scholar 

  • Hass HC, Kuhn G, Monien P, Brumsack HJ, Forwick M (2010) Climate fluctuations during the past two millennia as recorded in sediments from Maxwell Bay, South Shetland Islands, West Antarctica. Geol Soc Lond Spec Publ 344: 243–260

    Article  Google Scholar 

  • Hernando M, Schloss IR, Malanga G, Almando O, Ferreyra GA, Aguiar MB, Puntarulo S (2015) Effects of salinity changes on coastal Antarctic phytoplankton physiology and assemblage composition. J Exp Mar Bio Ecol 466:110–119

    Article  CAS  Google Scholar 

  • Hewes CD, Reiss CS, Kahru M, Mitchell BG, Holm-Hansen O (2008) Control of phytoplankton biomass by dilution and mixing depth in the western Weddell-Scotia Confluence. Mar Ecol Prog Ser 366:15–29

    Article  CAS  Google Scholar 

  • Hewes CD, Reiss CS, Holm-Hansen O (2009) A quantitative analysis of sources for summertime phytoplankton variability over 18 years in the South Shetland Islands Antarctica. region. Deep-Sea Res Part I 56:1230–1241. https://doi.org/10.1016/j.dsr.2009.01.010

    Article  CAS  Google Scholar 

  • Holm-Hansen O, Hewes CD (2004) Deep chlorophyll-a maxima (DCMs) in Antarctic waters-I. Relationships between DCMs and the physical, chemical, and optical conditions in the upper water column. Polar Biol 27:699–710

    Article  Google Scholar 

  • Holm-Hansen O, Mitchell BG (1991) Spatial and temporal distribution of phytoplankton and primary production in the western Bransfield Strait region. Deep-Sea Res 38:961–980

    Article  CAS  Google Scholar 

  • Holm-Hansen O, Hewes CD, Villafañe VE, Helbling EW, Silva N, Amos AF (1997) Distribution of phytoplankton and nutrients in relation to different water masses in the area around Elephant Island, Antarctica. Polar Biol 18:145–153

    Article  Google Scholar 

  • Hopkinson BM, Mitchell BG, Reynolds RA, Wang H, Selph KE, Measures CL, Hewes CD, Holm-Hansen O, Barbeau KA (2007) Iron limitation across chlorophyll gradients in the southern Drake Passage: phytoplankton responses to iron addition and photosynthetic indicators of iron stress. Limnol Oceanogr 52:2540–2554

    Article  CAS  Google Scholar 

  • Kang SH, Lee SH (1995) Antarctic phytoplankton assemblage in the western Bransfield Strait region, February 1993: composition, biomass and mesoscale distributions. Mar Ecol Prog Ser 129:253–267

    Article  Google Scholar 

  • Kang JS, Kang SH, Lee JH, Lee SH (2002) Seasonal variation of microalgal assemblages at a fixed station in King George Island, Antarctica, 1996. Mar Ecol Prog Ser 229:19–32

    Article  Google Scholar 

  • Kawaguchi S, Ichii T, Naganobu M (1999) Green krill, the indicator of micro- and nano-size phytoplankton availability to krill. Polar Biol 22:133–136

    Article  Google Scholar 

  • Khim BK, Shim J, Yoon HI, Kang YC, Jang YH (2007) Lithogenic and biogenic particle deposition in an Antarctic coastal environment (Marian Cove, King George Island): seasonal patterns from a sediment trap study. Estuar Coast Shelf Sci 73:111–122

    Article  Google Scholar 

  • Klinck J (1998) Heat and salt changes on the continental shelf west of the Antarctic Peninsula between January 1993 and January 1994. J Geophys Res 103:7617–7636

    Article  Google Scholar 

  • Kopczynska E (2008) Phytoplankton variability in Admiralty Bay, King George Island, South Shetland Islands: six years of monitoring. Pol Polar Res 29(2):117–139

    Google Scholar 

  • Llanos A, Acevedo A, Troncoso A, González H, Sandra M, Iriarte J, Bernal P (1991) Abundancia y producción secundaria bacteriana en el área de las islas Shetland del Sur, Antártica. Ser Cien INACH 41:55–63

    Google Scholar 

  • Lovenduski N, Gruber N (2005) Impact of the Southern Annular Mode on Southern Ocean circulation and biology. Geophys Res Lett 32:11

    Article  Google Scholar 

  • Marshall GJ (2003) Trends in the Southern Annular Mode from observations and reanalyses. J Clim 16:4134–4143

    Article  Google Scholar 

  • Martinson DG, McKee DC (2012) Transport of warm Upper Circumpolar Deep Water onto the western Antarctic Peninsula continental shelf. Ocean Sci 8:433–442

    Article  Google Scholar 

  • Martinson DG, Stammerjohn S, Iannuzzi R, Smith RC, Vernet M (2008) Western Antarctic Peninsula physical oceanography and spatio–temporal variability. Deep Sea Res Part II 55:1964–1987

    Article  Google Scholar 

  • Meredith MP, King JC (2005) Rapid climate change in the ocean to the west of the Antarctic Peninsula during the second half of the twentieth century. Geophys Res Lett 32:L19604. https://doi.org/10.1029/2005GL024042

    Article  Google Scholar 

  • Moffat C, Owens B, Beardsley RC (2009) On the characteristics of Circumpolar Deep Water intrusions to the west Antarctic Peninsula Continental Shelf. J Geophys Res 114:C5

    Article  Google Scholar 

  • Moline MA, Claustre H, Frazer TK, Schofield O, Vernet M (2004) Alteration of the food web along the Antarctic Peninsula in response to a regional warming trend. Glob Change Biol 10:1973–1980

    Article  Google Scholar 

  • Monien P, Schnetger B, Brumsack HJ (2011) A geochemical record of late Holocene palaeoenvironmental changes at King George Island (maritime Antarctica). Antarct Sci 23:255–267

    Article  Google Scholar 

  • Montes-Hugo M, Vernet M, Martinson D, Smith R, Iannuzzi R (2008) Variability on phytoplankton size structure in the western Antarctic Peninsula (1997–2006). Deep-Sea Res Part II 55:2106–2117

    Article  Google Scholar 

  • Montes-Hugo MA, Doney SC, Ducklow HW, Fraser W, Martinson D, Stammerjohn SE, Schofield O (2009) Recent changes in phytoplankton communities associated with rapid regional climate change along the Western Antarctic Peninsula. Science 323:1470–1473

    Article  CAS  Google Scholar 

  • Mura MP, Satta MP, Agustí S (1995) Water-mass influences on Summer Antarctic phytoplankton biomass and community structure. Polar Biol 15:15–20

    Article  Google Scholar 

  • Niiler PP, Amos AF, Hu JH (1991) Water masses and 200 m relative geostrophic circulation in the western Bransfield Strait region. Deep-Sea Res Part II 38:943–959

    Article  Google Scholar 

  • Orsi AH, Whitworth TW III, Nowlin WD Jr (1995) On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep Sea Res Part I 42:641–673

    Article  Google Scholar 

  • Parsons TR, Maita Y, Lali CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon, Oxford, p 173

    Google Scholar 

  • Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25(5):943–948

    Article  Google Scholar 

  • Powell R, Domack E (2002) Modern glaciomarine environments. In: Menzies J (ed) Modern and past glacial environments. Butterworth–Heinemann, Boston

    Google Scholar 

  • Prezelin B, Hofmann E, Manegelt C, Klinck JM (2000) The linkage between Upper Circumpolar Deep Water (UCDW) and phytoplankton assemblages on the west Antarctic Peninsula continental shelf. J Mar Res 58:165–202

    Article  Google Scholar 

  • Ragueneau O, Savoye N, Del Amo Y, Cotten J, Tardiveau B, Leynaert A (2005) A new method for the measurement of biogenic silica in suspended matter of coastal waters: using Si: Al ratios to correct for the mineral interference. Cont Shelf Res 25:697–710

    Article  Google Scholar 

  • Reynolds CS (1997) Vegetation processes in the pelagic: a model for ecosystem theory. Ecology Institute, Oldendorf

    Google Scholar 

  • Rhein M, Rintoul SR, Aoki S, Campos E, Chambers D, Feely RA, Gulev S, Johnson GC, Josey SA, Kostianoy A, Mauritzen C, Roemmich D, Talley LD, Wang F (2013) Observations Ocean. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, New York

    Google Scholar 

  • Rückamp M, Blindow N (2012) King George Island ice cap geometry updated with airborne GPR measurements. Earth Syst Sci Data 4:23–30

    Article  Google Scholar 

  • Rückamp M, Braun M, Suckro S, Blindow N (2011) Observed glacial changes on the King George Island ice cap, Antarctica, in the last decade. Glob Planet Change 79:99–109

    Article  Google Scholar 

  • Saba GK, Fraser WR, Saba V, Iannuzzi R, Coleman KE, Doney SC, Ducklow HW, Martinson DG, Miles TN, Patterson-Fraser DL, Stammerjohn SE, Steinberg DK, Schofield O (2014) Winter and spring controls on the summer food web of the coastal West Antarctic Peninsula. Nat Commun 5:4318. https://doi.org/10.1038/ncomms5318

    Article  CAS  PubMed  Google Scholar 

  • Sangrà P, García-Muñoz C, García CM (2014) Coupling between the upper ocean layer variability and size-fractionated phytoplankton in a no nutrient environment. Mar Ecol Prog Ser 499:35–46

    Article  Google Scholar 

  • Sangrà P, Stegner A, Hernández-Arencibia M, Marrero-Díaz A, Salinas C, Aguiar-González B, Henríquez-Pastene C (2017) The Bransfield gravity current. Deep-Sea Res Part I 119:1–15

    Article  Google Scholar 

  • Savtchenko A, Ouzounov D, Ahmad S, Acker J, Leptoukh G, Koziana J, Nickless D (2004) Terra and Aqua MODIS products available from NASA GES DAAC. Adv Space Res 34:710–714

    Article  Google Scholar 

  • Schloss IR, Ferreyra GA (2002) Primary production, light and vertical mixing in Potter Cove, a shallow Bay in the maritime Antarctic. Polar Biol 25:41–48

    Article  Google Scholar 

  • Schloss IR, Ferreyra G, Ruiz-Pino D (2002) Phytoplankton biomass in Antarctic shelf zones: a conceptual model based on Potter Cove, King George Island. J Mar Syst 36:129–143

    Article  Google Scholar 

  • Schloss IR, Doris A, Moreau S, Demers S, Bers V, González O, Ferreyra G (2012) Response of phytoplankton dynamics to 19-year (1991–2009) climate trends in Potter Cove (Antarctica). J Mar Syst 92:53–66

    Article  Google Scholar 

  • Schloss IR, Wasilowska A, Dumont D, Almandoz GO, Hernando MP, Michaud- Temblay CA, Saravia L, Rzepecki M, Monien P, Kopczynska EE, Bers AV, Ferreyra GA (2014) On the phytoplankton bloom in coastal waters of southern King George Island (Antarctica) in January 2010: an exceptional feature? Limnol Oceanogr 59:195–210

    Article  CAS  Google Scholar 

  • Schofield O, Ducklow HW, Martinson DG, Meredith MP, Moline MA, Fraser WR (2010) How do polar marine ecosystems respond to rapid climate change? Science 328:1520–1523

    Article  CAS  Google Scholar 

  • Schofield O, Saba G, Coleman K, Carvalho F, Couto N, Ducklow H, Fink Z, Irwin A, Khal A, Milesa T, Montes-Hugo M, Stammerjohn S, Waite N (2017) Decadal variability in coastal phytoplankton community composition in a changing West Antarctic Peninsula. Deep Sea Res I 124:42–54

    Article  CAS  Google Scholar 

  • Sherr EB, Sherr BF (1994) Bacterivory and herbivory: key roles of phagotrophic protists in pelagic food webs. Microb Ecol 28(2):223–235

    Article  CAS  Google Scholar 

  • Shiomoto A, Ishii H (1995) Distribution of biogenic silica and particulate organic matter in coastal and oceanic surface waters off the South Shetland Islands in summer. Polar Biol 15:105–113

    Article  Google Scholar 

  • Simms AR, Milliken KT, Anderson JB, Wellner JS (2011) The marine record of deglaciation of the South Shetland Islands, Antarctica since the Last Glacial Maximum. Quat Sci Rev 30:1583–1601

    Article  Google Scholar 

  • Simoes JC, Gobmann H, Delmas RJ, Moskalevsky MY (2004) Glaciological research in King George Island: missions and developments in the 1990s. Pesquisa Antarct Brasileira 4:1–8

    Google Scholar 

  • Smith RC, Dierssen HM, Vernet M (1996) Phytoplankton biomass and productivity in the Western Antarctic Peninsula region. Foundations for ecological research West of the Antarctic Peninsula. Antarct Res S 70:333–356

    Article  Google Scholar 

  • Spreen G, Kaleschke L, Heygster G (2008) Sea ice remote sensing using AMSR-E 89 GHz channels. J Geophys Res 113:C02S03. https://doi.org/10.1029/2005JC003384

    Article  Google Scholar 

  • Stammerjohn SE, Martinson DG, Smith RC, Yuan X, Rind D (2008) Trends in Antarctic annual sea ice retreat and advance and their relation to ENSO and Southern annular mode variability. J Geophys Res 113:C03S90. https://doi.org/10.1029/2007JC004269

    Article  Google Scholar 

  • Stammerjohn S, Massom R, Rind D, Martinson D (2012) Regions of rapid sea ice change: an inter-hemispheric seasonal comparison. Geophys Res Lett. https://doi.org/10.1029/2012GL050874

    Article  Google Scholar 

  • Strickland JDH, Parsons TR (1972) A practical handbook of seawater analysis, Fisheries Research Board of Canada

  • Teira E, Mouriño-Carballido B, Martínez-García S, Sobrino C, Ameneiro J, Hernández-León S, Vázquez E (2012) Controls of primary production and bacterial carbon metabolism around South Shetland Islands. Deep-Sea Res Part I 69:70–81

    Article  CAS  Google Scholar 

  • Thomas ER, Marshall G, McConnell JR (2008) A doubling in snow accumulation in the western Antarctic Peninsula since 1850. Geophys Res Lett 35:L01706. https://doi.org/10.1029/2007GL032529

    Article  Google Scholar 

  • Thompson DWJ, Solomon S (2002) Interpretation of recent Southern Hemisphere climate change. Science 296:895–899

    Article  CAS  Google Scholar 

  • Tomas C (1997) Identifying marine phytoplankton. Academic, St. Petersburg

    Google Scholar 

  • Utermöhl H (1958) Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt. Verh Int Verein Theoret Angew Limnol 9:1–39

    Google Scholar 

  • Varela M, Fernandez E, Serret P (2002) Size-fractionated phytoplankton biomass and primary production in the Gerlache and south Bransfield Straits (Antarctic Peninsula) in Austral summer 1995–1996. Deep-Sea Res Part II 49:749–768

    Article  CAS  Google Scholar 

  • Vaughan DG, Comiso JC, Allison I, Carrasco J, Kaser G, Kwok R, Mote P, Murray T, Paul F, Ren J, Rignot E, Solomina O, Steffen K, Zhang T (2013) Observations cryosphere. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013 the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Villafañe V, Helbling E, Holm-Hansen O (1995) Spatial and temporal variability of phytoplankton biomass and taxonomic composition around Elephant Island, Antarctica, during the summers of 1990–1993. Mar Biol 123:677–686

    Article  Google Scholar 

  • Winkler LW (1888) Die Bestimmung des in Wasser gelösten Sauerstoffen. Ber Dtsch Chem Ges 21:2843–2855

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support of this work to several projects and centers: FONDECYT–INACH 3130356, DID-UACh S-2015-28, Centers COPAS Sur-Austral CONICYT PIA PFB31 and FONDAP-IDEAL 15150003, and Nucleo Milenio Paleoclima del Hemisferio Sur NC120066. C. Aracena acknowledges the Institute of Marine and Limnological Sciences (ICML-UACh) and the Department of Oceanography of the University of Concepción for welcoming her to the laboratory facilities. C. Aracena also thanks Dr. Jose Luis Iriarte for providing technical personnel and equipment for fieldwork. Special thanks to Dr. Cristian Rodrigo, Dr. Javier Arata and to the Antarctic Chilean Institute (INACH) personnel for logistic and scientific support during fieldwork. We thank the captain and crew of the vessel AP 41 AQUILES for a very successful cruise. We sincerely thank Lilian Nuñez, Alejandro Avila, and Victor Acuña for laboratory work. Our special thanks to Dr. Irene Schloss for her valuable comments and suggestions to our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Aracena.

Ethics declarations

Conflict of interest

We do not have any conflicts of interest with the data presented in this scientific contribution.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1472 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aracena, C., González, H.E., Garcés-Vargas, J. et al. Influence of summer conditions on surface water properties and phytoplankton productivity in embayments of the South Shetland Islands. Polar Biol 41, 2135–2155 (2018). https://doi.org/10.1007/s00300-018-2338-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-018-2338-x

Keywords

Navigation