Skip to main content

Advertisement

Log in

Ocean spectral data assimilation without background error covariance matrix

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

Predetermination of background error covariance matrix B is challenging in existing ocean data assimilation schemes such as the optimal interpolation (OI). An optimal spectral decomposition (OSD) has been developed to overcome such difficulty without using the B matrix. The basis functions are eigenvectors of the horizontal Laplacian operator, pre-calculated on the base of ocean topography, and independent on any observational data and background fields. Minimization of analysis error variance is achieved by optimal selection of the spectral coefficients. Optimal mode truncation is dependent on the observational data and observational error variance and determined using the steep-descending method. Analytical 2D fields of large and small mesoscale eddies with white Gaussian noises inside a domain with four rigid and curved boundaries are used to demonstrate the capability of the OSD method. The overall error reduction using the OSD is evident in comparison to the OI scheme. Synoptic monthly gridded world ocean temperature, salinity, and absolute geostrophic velocity datasets produced with the OSD method and quality controlled by the NOAA National Centers for Environmental Information (NCEI) are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Bretherton FP, Davis RE, Fandry CB (1976) A technique for objective analysis and design of oceanographic experiments applied to MODE-73. Deep-Sea Res Oceanogr Abstr 23:559–582. doi:10.1016/0011-7471(76)90001-2

    Article  Google Scholar 

  • Chu (1995) P-vector method for determining absolute velocity from hydrographic data

  • Chu PC (2008) Probability distribution function of the upper equatorial Pacific current speeds. Geophys Res Lett 35. doi:10.1029/2008GL033669

  • Chu PC (2009) Statistical characteristics of the global surface current speeds obtained from satellite altimeter and scatterometer data. IEEE J Sel Topics Earth Obs Remote Sensing 2(1):27–32

    Article  Google Scholar 

  • Chu PC (2011) Global upper ocean heat content and climate variability. Ocean Dyn 61(8):1189–1204

    Article  Google Scholar 

  • Chu PC, Fan CW (2016a) Synoptic monthly gridded three dimensional (3D) World Ocean Database temperature and salinity from January 1945 to December 2014 (NCEI Accession 0140938). NOAA National Centers for Environmental Information (NCEI), http://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:0140938.

  • Chu PC, Fan CW (2016b) Synoptic Monthly Gridded WOD Absolute Geostrophic Velocity (SMG-WOD-V) (January 1945–December 2014) with the P-vector method (NCEI Accession 0146195). NOAA National Centers for Environmental Information (NCEI), http://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:0146195

  • Chu PC, Wang GH (2003) Seasonal variability of thermohaline front in the central South China Sea. J Oceanogr 59:65–78

    Article  Google Scholar 

  • Chu PC, Ivanov LM, Margolina TM (2005b) Seasonal variability of the Black Sea chlorophyll-a concentration. J Mar Syst 56:243–261

    Article  Google Scholar 

  • Chu PC, Ivanov LM, Melnichenko OM (2005a) Fall-winter current reversals on the Texas-Louisiana continental shelf. J Phys Oceanogr 35:902–910

    Article  Google Scholar 

  • Chu PC, Fan CW, Sun LC (2016) Synoptic monthly gridded Global Temperature and Salinity Profile Programme (GTSPP) water temperature and salinity from January 1990 to December 2009 (NCEI Accession 0138647). NOAA National Centers for Environmental Information (NCEI), http://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:0138647.

  • Chu PC, Ivanov LM, Korzhova TP, Margolina TM, Melnichenko OM (2003a) Analysis of sparse and noisy ocean current data using flow decomposition. Part 1: theory. J Atmos Oceanic Technol 20:478–491

    Article  Google Scholar 

  • Chu PC, Ivanov LM, Korzhova TP, Margolina TM, Melnichenko OM (2003b) Part 2: application to Eulerian and Lagrangian data. J Atmos Ocean Technol 20:492–512

    Article  Google Scholar 

  • Chu PC, Ivanov LM, Margolina TM (2004b) Rotation method for reconstructing process and field from imperfect data. Int J Bifur Chaos 14:2991–2997

    Article  Google Scholar 

  • Chu PC, Ivanov LM, Melnichenko OV, Wells NC (2007) Long baroclinic Rossby waves in the tropical North Atlantic observed from profiling floats. J Geophys Res 112:C05032. doi:10.1029/2006JC003698

    Google Scholar 

  • Chu PC, Tokmakian RT, Fan CW, Sun LC (2015) Optimal spectral decomposition (OSD) for ocean data assimilation. J Atmos Ocean Technol 32:828–841

    Article  Google Scholar 

  • Chu PC, Wang GH, Chen YC (2002) Japan/East Sea (JES) circulation and thermohaline structure, part 3, autocorrelation functions. J Phys Oceanogr 32:3596–3615

    Article  Google Scholar 

  • Chu PC, Wang GH, Fan CW (2004a) Evaluation of the U.S. Navy’s Modular Ocean Data Assimilation System (MODAS) using the South China Sea Monsoon Experiment (SCSMEX) data. J Oceanogr 60:1007–1021

    Article  Google Scholar 

  • Chu PC, Wells SK, Haeger SD, Szczechowski C, Carron M (1997) Temporal and spatial scales of the Yellow Sea thermal variability. J Geophys Res (Oceans) 102:5655–5668

    Article  Google Scholar 

  • Evensen G (2003) The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn 53:343–367

    Article  Google Scholar 

  • Franke R, Nielson G (1991) Scattered data interpolation and application: a tutorial and survey. In: Hagen H, Roller D (eds) Geometric modelling, methods and applications. Springer, Berlin, pp. 131–160

    Google Scholar 

  • Galanis GN, Louka P, Katsafados Kallos PG, Pytharoulis I (2006) Applications of Kalman filters based on non-linear functions to numerical weather predictions. Ann Geophys 24:2451–2460

    Article  Google Scholar 

  • Han GJ, Wu XR, Zhang SQ, Liu ZY, Li W (2013) Error covariance estimation for coupled data assimilation using a Lorenz atmosphere and a simple pynocline ocean model. J Clim 26:10218–10231

    Article  Google Scholar 

  • Oke PR, Brassington GB, Griffin DA, Schiller A (2008) The Bluelink Ocean Data Assimilation System (BODAS). Ocean Model 21:46–70

    Article  Google Scholar 

  • Spepard D (1968) A two-dimensional interpolation function for irregularly spaced data. Proc 23rd Nat Conf ACM, 517–523.

  • Sun LC, Thresher A, Keeley R, et al. (2009) The data management system for the Global Temperature and Salinity Profile Program (GTSPP). In Proceedings of the “OceanObs’09: Sustained Ocean Observations and Information for Society” Conference (Vol. 2), Venice, Italy, 21–25 September 2009, Hall, J, Harrison D.E. and Stammer, D., Eds., ESA Publication WPP-306

  • Tang Y, Kleeman R (2004) SST assimilation experiments in a tropical Pacific Ocean model. J Phys Oceanogr 34:623–642

    Article  Google Scholar 

  • Vapnik, VH (1983) Reconstruction of Empirical Laws from Observations (in Russian). Nauka, p 447

  • Yan CX, Zhu J, Xie JP (2015) An ocean data assimilation system in the Indian Ocean and West Pacific Ocean. Adv Atmos Sci. doi:10.1007/s00376-015-4121-z

    Google Scholar 

Download references

Acknowledgments

The Office of Naval Research, the Naval Oceanographic Office, and the Naval Postgraduate School supported this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter C. Chu.

Additional information

Responsible Editor: Jean-Marie Beckers

This article is part of the Topical Collection on the 47th International Liège Colloquium on Ocean Dynamics, Liège, Belgium, 48 May 2015

Appendices

Appendix A. Determination of H-matrix using all grid points

IDW interpolation, using all grid points, is one of the most commonly used techniques for interpolation based on the assumption that the value of h mn in H-matrix are influenced more by the nearby points and less by the more distant points. Let

$$ {d}_n^m=\sqrt{{\left({x}^{(m)}-{x}_i\right)}^2+{\left({y}^{(m)}-{y}_j\right)}^2} $$
(41)

be the distance between the grid point (x i , y j ) and observational point (x (m), y (m)). The influence of the grid point x n on the observational point x (m) is given by (Spepard 1968)

$$ {h}_{mn}={\left({d}_n^m\right)}^{-q}/{\displaystyle \sum_{n=1}^N{\left({d}_n^m\right)}^{-q}} $$
(42)

where q is an arbitrary positive real number called the power parameter (typically, q = 2). Another form of h mn is given by (Franke and Nielson 1991)

$$ {h}_{mn}=\frac{{\left[\left({D}^{(m)}-{d}_n^m\right)/{D}^{(m)}{d}_n^m\right]}^2}{{\displaystyle \sum_{n=1}^N{\left[\left({D}^{(m)}-{d}_n^m\right)/{D}^{(m)}{d}_n^m\right]}^2}}, $$
(43)

where D (m) is the distance from the observational point x (m) to the most distant grid point. Equation (43) has been found to give better results than (42). As a result, c b(x (m), t), is somewhat symmetric about each grid point.

Appendix B. Determination of H-matrix using neighboring grid points

Consider the position vector x = (x, y) located inside the grid cell (Fig. 14),

Fig. 14
figure 14

Interpolation at an observational point r (m) from four neighboring grid points

x i  ≤ x < x i + 1,y j  ≤ y < y j + 1..

Mathematically, the variable c b at r (inside the grid cell) can be represented approximately by a polynomial,

$$ {c}_b\left(\mathbf{r}\right)={\displaystyle \sum_{\alpha =0}^L{\displaystyle \sum_{\beta =0}^L{A}_{\alpha \beta }{\left(x-{x}_i\right)}^{\alpha }{\left(y-{y}_j\right)}^{\beta }}} $$
(44)

where L = 1 refers to the bilinear interpolation, and L = 3 leads to the bicubic interpolation. For the bilinear interpolation, Eq. (44) becomes

$$ {c}_b\left(\mathbf{r}\right)={A}_{00}+{A}_{10}\left(x-{x}_i\right)+{A}_{01}\left(y-{y}_j\right)+{A}_{11}\left(x-{x}_i\right)\left(y-{y}_j\right) $$
(45)

or in matrix notation,

$$ {c}_b\left(\mathbf{r}\right)=\left[1\kern0.5em \left(x-{x}_i\right)\right]\left[\begin{array}{cc}\hfill {A}_{00}\hfill & \hfill {A}_{01}\hfill \\ {}\hfill {A}_{10}\hfill & \hfill {A}_{11}\hfill \end{array}\right]\left[\begin{array}{c}\hfill 1\hfill \\ {}\hfill \left(y-{y}_j\right)\hfill \end{array}\right]. $$
(46)

Since c b at four neighboring grid points: c b (x i , y j ), c b (x i+1, y j ), c b (x i+1, y j ), c b (x i+1, y j+1) are given, substitution of the four values into (45) leads to the determination of the four coefficients A 00, A 10, A 01, A 11. Using these coefficients, the bilinear interpolation (45) becomes

$$ \begin{array}{l}{c}_b\left(\mathbf{r}\right)=\frac{c_b\left({x}_{i+1},{y}_{j+1}\right)}{\left({x}_{i+1}-{x}_i\right)\left({y}_{j+1}-{y}_j\right)}\left(x-{x}_i\right)\left(y-{y}_j\right)+\frac{c_b\left({x}_{i+1},{y}_j\right)}{\left({x}_{i+1}-{x}_i\right)\left({y}_{j+1}-{y}_j\right)}\left(x-{x}_i\right)\left({y}_{j+1}-y\right)\\ {}+\frac{c_b\left({x}_i,{y}_{j+1}\right)}{\left({x}_{i+1}-{x}_i\right)\left({y}_{j+1}-{y}_j\right)}\left({x}_{i+1}-x\right)\left(y-{y}_j\right)+\frac{c_b\left({x}_i,{y}_j\right)}{\left({x}_{i+1}-{x}_i\right)\left({y}_{j+1}-{y}_j\right)}\left({x}_{i+1}-x\right)\left({y}_{j+1}-y\right)\end{array} $$
(47)

Let the observational point r (m) be located in the grid cell,

$$ {x}_i\le {x}^{(m)}<{x}_{i+1},{y}_j\le {y}^{(m)}<{y}_{j+1}. $$

Evaluation of c b at the observational point r (m) using (46) leads to

$$ {c}_b\left({\mathbf{r}}^{(m)}\right)={p}_{i,j}^{(m)}{c}_b\left({x}_i,{y}_i\right)+{p}_{i+1,j}^{(m)}{c}_b\left({x}_{i+1},{y}_j\right)+{p}_{i,j+1}^{(m)}{c}_b\left({x}_i,{y}_{j+1}\right)+{p}_{i+1,j+1}^{(m)}{c}_b\left({x}_{i+1},{y}_{j+1}\right) $$
(48)

where the proportional coefficients {\( {p}_{i,j}^{(m)},{p}_{i+1,j}^{(m)},{p}_{i,j+1}^{(m)},{p}_{i+1,j+1}^{(m)} \)} are defined by

$$ \begin{array}{ll}{p}_{i,j}^{(m)}=\frac{\left({x}_{i+1}-{x}^{(m)}\right)\left({y}_{j+1}-{y}^{(m)}\right)}{\left({x}_{i+1}-{x}_i\right)\left({y}_{j+1}-{y}_j\right)},\hfill & {p}_{i+1,j}^{(m)}=\frac{\left({x}^{(m)}-{x}_i\right)\left({y}_{j+1}-{y}^{(m)}\right)}{\left({x}_{i+1}-{x}_i\right)\left({y}_{j+1}-{y}_j\right)},\hfill \\ {}{p}_{i,j+1}^{(m)}=\frac{\left({x}_{i+1}-{x}^{(m)}\right)\left({y}^{(m)}-{y}_j\right)}{\left({x}_{i+1}-{x}_i\right)\left({y}_{j+1}-{y}_j\right)}\hfill & {p}_{i+1,j+1}^{(m)}=\frac{\left({x}^{(m)}-{x}_i\right)\left({y}^{(m)}-{y}_j\right)}{\left({x}_{i+1}-{x}_i\right)\left({y}_{j+1}-{y}_j\right)}.\hfill \end{array} $$
(49)

It is noted that the proportionality coefficients {p i , j(m) , p i + 1 , j(m) , p i , j + 1(m) , p i + 1 , j + 1(m)} depend solely on the location of the observational points (r (m)), and

$$ {p}_{i,j}^{(m)}+{p}_{i+1,j}^{(m)}+{p}_{i,j+1}^{(m)}+{p}_{i+1,j+1}^{(m)}=1. $$
(50)

Setting L = 3 in (44) leads to the bicubic spline interpolation,

$$ \begin{array}{l}{c}_b\left(\mathbf{r}\right)={A}_{00}+{A}_{10}\left(x-{x}_i\right)+{A}_{01}\left(y-{y}_j\right)+{A}_{11}\left(x-{x}_i\right)\left(y-{y}_j\right)\hfill \\ {}+{A}_{20}{\left(x-{x}_i\right)}^2+{A}_{02}{\left(y-{y}_j\right)}^2+{A}_{30}{\left(x-{x}_i\right)}^3\hfill \\ {}+{A}_{21}{\left(x-{x}_i\right)}^2\left(y-{y}_j\right)+{A}_{12}\left(x-{x}_i\right){\left(y-{y}_j\right)}^2+{A}_{03}{\left(y-{y}_j\right)}^3\hfill \end{array} $$
(51)

or in matrix notation,

$$ {c}_b\left(\mathbf{r}\right)=\left[\begin{array}{cccc}\hfill 1\hfill & \hfill \left(x-{x}_i\right)\hfill & \hfill {\left(x-{x}_i\right)}^2\hfill & \hfill {\left(x-{x}_i\right)}^3\hfill \end{array}\right]\left[\begin{array}{cccc}\hfill {A}_{00}\hfill & \hfill {A}_{01}\hfill & \hfill {A}_{02}\hfill & \hfill {A}_{03}\hfill \\ {}\hfill {A}_{10}\hfill & \hfill {A}_{11}\hfill & \hfill {A}_{12}\hfill & \hfill 0\hfill \\ {}\hfill {A}_{20}\hfill & \hfill {A}_{21}\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill {A}_{30}\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \end{array}\right]\left[\begin{array}{c}\hfill 1\hfill \\ {}\hfill \left(y-{y}_j\right)\hfill \\ {}\hfill {\left(y-{y}_j\right)}^2\hfill \\ {}\hfill {\left(y-{y}_j\right)}^3\hfill \end{array}\right] $$
(52)

which is rewritten by

$$ \begin{array}{l}{c}_b\left(\mathbf{r}\right)=\left[\begin{array}{cccc}\hfill 1\hfill & \hfill x\hfill & \hfill {x}^2\hfill & \hfill {x}^3\hfill \end{array}\right]\left[\begin{array}{cccc}\hfill 1\hfill & \hfill -{x}_i\hfill & \hfill {x}_i^2\hfill & \hfill -{x}_i^3\hfill \\ {}\hfill 0\hfill & \hfill 1\hfill & \hfill -2{x}_i\hfill & \hfill 3{x}_i^2\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 1\hfill & \hfill -3{x}_i\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 1\hfill \end{array}\right]\\ {}\left[\begin{array}{cccc}\hfill {A}_{00}\hfill & \hfill {A}_{01}\hfill & \hfill {A}_{02}\hfill & \hfill {A}_{03}\hfill \\ {}\hfill {A}_{10}\hfill & \hfill {A}_{11}\hfill & \hfill {A}_{12}\hfill & \hfill 0\hfill \\ {}\hfill {A}_{20}\hfill & \hfill {A}_{21}\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill {A}_{30}\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \end{array}\right]\left[\begin{array}{cccc}\hfill 1\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill -{y}_j\hfill & \hfill 1\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill {y}_j^2\hfill & \hfill -2{y}_j\hfill & \hfill 1\hfill & \hfill 0\hfill \\ {}\hfill -{y}_j^3\hfill & \hfill 3{y}_j^2\hfill & \hfill 3{y}_j\hfill & \hfill 1\hfill \end{array}\right]\left[\begin{array}{c}\hfill 1\hfill \\ {}\hfill y\hfill \\ {}\hfill {y}^2\hfill \\ {}\hfill {y}^3\hfill \end{array}\right]\end{array} $$
(53)

Determination of the 10 coefficients (A 00, A 01, A 02, A 03, A 10, A 11, A 12, A 20, A 21, A 30) requires not only the values,

$$ \begin{array}{l}{A}_{00}={c}_b\left({x}_i,{y}_j\right),\hfill \\ {}{A}_{00}+{A}_{10}\varDelta x+{A}_{20}{\left(\varDelta x\right)}^2+{A}_{30}{\left(\varDelta x\right)}^3={c}_b\left({x}_{i+1},{y}_j\right),\hfill \\ {}{A}_{00}+{A}_{01}\varDelta y+{A}_{02}{\left(\varDelta y\right)}^2+{A}_{03}{\left(\varDelta y\right)}^3={c}_b\left({x}_i,{y}_{j+1}\right),\hfill \\ {}\begin{array}{l}{A}_{00}+{A}_{10}\varDelta x+{A}_{01}\varDelta y+{A}_{11}\Delta \mathrm{x}\Delta \mathrm{y}+{A}_{20}{\left(\varDelta x\right)}^2+{A}_{02}{\left(\varDelta y\right)}^2\\ {}+{A}_{30}{\left(\varDelta x\right)}^3+{A}_{21}{\left(\varDelta x\right)}^2\varDelta y+{A}_{12}\varDelta x{\left(\varDelta y\right)}^2+{A}_{03}{\left(\varDelta y\right)}^3\\ {}={c}_b\left({x}_{i+1},{y}_{j+1}\right),\end{array}\hfill \end{array} $$
(54)

but also the derivatives at the neighboring grid points

$$ \begin{array}{l}{A}_{10}=\partial {c}_b\left({x}_i,{y}_j\right)/\partial x=\left[{c}_b\left({x}_{i+1},{y}_j\right)-{c}_b\left({x}_{i-1},{y}_j\right)\right]/2\varDelta x,\hfill \\ {}{A}_{01}=\partial {c}_b\left({x}_i,{y}_j\right)/\partial y=\left[{c}_b\left({x}_i,{y}_{j+1}\right)-{c}_b\left({x}_i,{y}_{j-1}\right)\right]/2\varDelta y,\hfill \\ {}\begin{array}{cc}\hfill \hfill & \hfill \begin{array}{l}{A}_{10}+2\left(\varDelta x\right){A}_{20}+3{\left(\varDelta x\right)}^2{A}_{30}=\partial {c}_b\left({x}_{i+1},{y}_j\right)/\partial x\\ {}=\left[{c}_b\left({x}_{i+2},{y}_j\right)-{c}_b\left({x}_i,{y}_j\right)\right]/2\varDelta x,\end{array}\hfill \end{array}\hfill \\ {}\begin{array}{cc}\hfill \hfill & \hfill \begin{array}{l}{A}_{10}+\left(\varDelta y\right){A}_{11}+{\left(\varDelta y\right)}^2{A}_{12}=\partial {c}_b\left({x}_i,{y}_{j+1}\right)/\partial x\\ {}=\left[{c}_b\left({x}_{i+1},{y}_{j+1}\right)-{c}_b\left({x}_{i-1},{y}_{j+1}\right)\right]/2\varDelta x,\end{array}\hfill \end{array}\hfill \\ {}\begin{array}{cc}\hfill \hfill & \hfill \begin{array}{l}{A}_{01}+\left(\varDelta x\right){A}_{11}+{\left(\varDelta x\right)}^2{A}_{21}=\partial {c}_b\left({x}_{i+1},{y}_j\right)/\partial y\\ {}=\left[{c}_b\left({x}_{i+1},{y}_{j+1}\right)-{c}_b\left({x}_{i+1},{y}_{j-1}\right)\right]/2\varDelta y,\end{array}\hfill \end{array}\hfill \\ {}\begin{array}{cc}\hfill \hfill & \hfill \begin{array}{l}{A}_{01}+2\left(\varDelta y\right){A}_{01}+3{\left(\varDelta y\right)}^2{A}_{03}=\partial {c}_b\left({x}_i,{y}_{j+1}\right)/\partial y\\ {}=\left[{c}_b\left({x}_i,{y}_{j+2}\right)-{c}_b\left({x}_i,{y}_j\right)\right]/2\varDelta y.\end{array}\hfill \end{array}\hfill \end{array} $$
(55)

The solution of the above set of 10 linear algebraic Eqs. (54) and (55) leads to the determination of the 10 coefficients (A 00, A 01, A 02, A 03, A 10, A 11, A 12, A 20, A 21, A 30). It is noted that values of c b at the 10 neighboring grid points (x i , y j ), (x i+1, y j ), (x i , y j+1), (x i+1, y j+1), (x i-1, y j ), (x i , y j-1), (x i+2, y j ), (x i-1, y j+1), (x i+1, y j-1), (x i , y j+2) are used to solve (54) and (55). Following (53), interpolation of c b at the 10 neighboring grid points on the observational r (m) = (x (m), y (m)) using the bicubic interpolation is given by

$$ \begin{array}{l}{c}_b\left({\mathbf{r}}^{(m)}\right)=\left[\begin{array}{cccc}\hfill 1\hfill & \hfill {x}^{(m)}\hfill & \hfill {\left({x}^{(m)}\right)}^2\hfill & \hfill {\left({x}^{(m)}\right)}^3\hfill \end{array}\right]\left[\begin{array}{cccc}\hfill 1\hfill & \hfill -{x}_i\hfill & \hfill {x}_i^2\hfill & \hfill -{x}_i^3\hfill \\ {}\hfill 0\hfill & \hfill 1\hfill & \hfill -2{x}_i\hfill & \hfill 3{x}_i^2\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 1\hfill & \hfill -3{x}_i\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 1\hfill \end{array}\right]\\ {}\left[\begin{array}{cccc}\hfill {A}_{00}\hfill & \hfill {A}_{01}\hfill & \hfill {A}_{02}\hfill & \hfill {A}_{03}\hfill \\ {}\hfill {A}_{10}\hfill & \hfill {A}_{11}\hfill & \hfill {A}_{12}\hfill & \hfill 0\hfill \\ {}\hfill {A}_{20}\hfill & \hfill {A}_{21}\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill {A}_{30}\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \end{array}\right]\left[\begin{array}{cccc}\hfill 1\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill -{y}_j\hfill & \hfill 1\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill {y}_j^2\hfill & \hfill -2{y}_j\hfill & \hfill 1\hfill & \hfill 0\hfill \\ {}\hfill -{y}_j^3\hfill & \hfill 3{y}_j^2\hfill & \hfill 3{y}_j\hfill & \hfill 1\hfill \end{array}\right]\left[\begin{array}{c}\hfill 1\hfill \\ {}\hfill {y}^{(m)}\hfill \\ {}\hfill {\left({y}^{(m)}\right)}^2\hfill \\ {}\hfill {\left({y}^{(m)}\right)}^3\hfill \end{array}\right]\end{array} $$
(56)

Thus, an equation similar to (48) can be written for evaluating c b at the observational point r (m) with the known 10 coefficients (A 00, A 01, A 02, A 03, A 10, A 11, A 12, A 20, A 21, A 30,

$$ \begin{array}{l}{c}_b\left({\mathbf{r}}^{(m)}\right)={p}_{i,j}^{(m)}{c}_b\left({x}_i,{y}_j\right)+{p}_{i+1,j}^{(m)}{c}_b\left({x}_{i+1},{y}_j\right)+{p}_{i,j+1}^{(m)}{c}_b\left({x}_i,{y}_{j+1}\right)\hfill \\ {}+{p}_{i+1,j+1}^{(m)}{c}_b\left({x}_{i+1},{y}_{j+1}\right)+{p}_{i-1,j}^{(m)}{c}_b\left({x}_{i-1},{y}_j\right)+{p}_{i,j-1}^{(m)}{c}_b\left({x}_i,{y}_{j-1}\right)+{p}_{i,+2j}^{(m)}{c}_b\left({x}_{i+2},{y}_j\right)\hfill \\ {}+{p}_{i-1,j+1}^{(m)}{c}_b\left({x}_{i-1},{y}_{j+1}\right)+{p}_{i+1,j-1}^{(m)}{c}_b\left({x}_{i+1},{y}_{j-1}\right)+{p}_{i,j+2}^{(m)}{c}_b\left({x}_i,{y}_{j+2}\right)\hfill \end{array} $$
(57)

where the 10 corresponding coefficients {p i , j(m) , p i + 1 , j(m) , p i , j + 1(m) , p i + 1 , j + 1(m), p i − 1 , j(m), p i , j − 1(m), p i ,  + 2j(m), p i − 1 , j + 1(m), p i + 1 , j − 1(m), p i , j + 2(m)} are analytically determined and depends solely on the location of the observational points (r (m)), and

$$ {p}_{i,j}^{(m)}+{p}_{i+1,j}^{(m)}+{p}_{i,j+1}^{(m)}+{p}_{i+1,j+1}^{(m)}+{p}_{i-1,j}^{(m)}+{p}_{i,j-1}^{(m)}+{p}_{i,+2j}^{(m)}+{p}_{i-1,j+1}^{(m)}+{p}_{i+1,j-1}^{(m)}+{p}_{i,j+2}^{(m)} $$
(58)

Since only 10 neighboring grid points are used to interpolate at the observational point r (m) using the bicubic interpolation, the matrix H has only 10 non-zero values in each row. However, it is too tedious to write it out.

Appendix C. Basis functions

As pointed by Chu et al. (2015), three necessary conditions should be satisfied in selection of basis functions {ϕ k (r)} as follows: (i) satisfaction of the same homogeneous boundary condition of the assimilated variable anomaly, (ii) orthonormality, and (iii) independence on the assimilated variables. The first necessary condition requires the same boundary condition for (c − c b ) and the basis functions {ϕ k }. The second necessary condition is given by

$$ {\displaystyle \underset{\varGamma }{\iint }{\phi}_k\left(\mathbf{r}\right){\phi}_{k\prime }}\left(\mathbf{r}\right)d\mathbf{r}={\delta}_{kk\prime }, $$
(59)

where δ kk′ is the Kronecker delta,

$$ {\delta}_{kk\prime }=\left\{\begin{array}{c}\hfill 0\kern1em \mathrm{if}\kern0.5em k\ne k^{\prime}\hfill \\ {}\hfill 1\kern1.25em \mathrm{if}\kern0.5em k=k^{\prime}\hfill \end{array}\right.. $$
(60)

Due to their independence on the assimilated variable (the third necessary condition), the basis functions are available prior to the data assimilation.

The basis functions are the eigenvectors {ϕ k } of the Laplacian operator with the same boundary condition as the variable anomaly (c − c b ),

$$ {\nabla}^2{\phi}_k=-{\lambda}_k{\phi}_{k,\kern1.5em }\left[{b}_1\left(\tau \right)\mathbf{e}\cdotp \nabla {\phi}_k+{b}_2\left(\tau \right){\phi}_k\right]\Big|{}_{\varGamma }=0,\kern0.75em k=1,\dots, \infty . $$
(61)

Here, {λ k } are the eigenvalues, e is the unit vector normal to the boundary; τ denotes a moving point along the boundary, and [b 1(τ) ,  b 2(τ)] are parameters varying with τ. The boundary condition in (61) becomes the Dirichlet boundary condition when b 1 = 0, and the Neumann boundary conditions when b 2 = 0. As pointed by Chu et al. (2015), different variable anomalies have different [b 1(τ) ,  b 2(τ)]. For example, the temperature, salinity, and velocity potential anomalies have b 2 = 0 for the rigid boundary and b 1 = 0 for the open boundary. However, the anomaly has b 1 = 0 for the rigid boundary and b 2 = 0 for the open boundary. It is obvious that the eigenvectors {ϕ k } are orthonormal and independent of the assimilated variables.

Appendix D. Vapnik-Chervonenkis dimension for mode truncation

The Vapnik-Chervonenkis dimension (Vapnik 1983; Chu et al. 2003a, 2015) is to seek the optimal mode truncation on the base of the first term of the analysis error (23),

$$ {J}_{tr}=\left\langle \left[{\boldsymbol{\upvarepsilon}}_K^T\mathbf{F}{\boldsymbol{\upvarepsilon}}_K\right]\right\rangle =\frac{{\displaystyle \sum_{n=1}^N{\left[{f}_n\left({D}_n-{D}_n^{(K)}\right)\right]}^2}}{N-1} $$
(62)

with the cost function

$$ \begin{array}{l}{J}_K={J}_{tr}+\mu \left(K,M,\alpha \right),\\ {}\mu \left(K,M,\alpha \right)={J}_{*}\sqrt{\frac{\left[ \ln \left(2M/K\right)+1\right]- \ln \left(\alpha /M\right)}{M/K}},\kern0.75em K=1,2,\dots, \infty \end{array} $$
(63)

Here, α (≪1) is the significance level. J * is the upper bound of J tr . For a given M, J tr decreases monotonically with K; μ increases with K if α is given. The optimal mode truncation is through the minimization of the cost function,

$$ \underset{K}{\mathit{\min}}\left(\ {J}_K\right)={J}_{K_{\mathrm{opt}}}. $$
(64)

This method neglects observational error [only first term of (23) considered] and ignores the model resolution (represented by the total number of grid points N). The ratio of observational points (M) and the spectral truncation (K) is the key to determine the optimal mode truncation K OPT.

Appendix E. B matrix

The B matrix is often established based on the assumption of statistical stationarity and homogeneity of the reconstructed field with a simple covariance function, for example Bretherton et al. (1976) proposed

$$ \mathbf{B}={\left[{b}_{ij}\right]}_{N\times N},\kern1em {b}_{ij}=\left(1-\frac{r_{ij}^2}{r_b^2}\right) \exp \left(-\frac{r_{ij}^2}{r_a^2}\right),\kern0.75em {r}_{ij}^2={\left|{\mathbf{r}}_i-{\mathbf{r}}_j\right|}^2,\kern0.5em {r}_b>{r}_a, $$
(65)

depending on distances only. Here, r ij is the distance between the two grid points r i and r aj ; r ay and r b are the decorrelation scale and zero crossing. To conduct the OI data assimilation, the three parameters (e o , r a , r b ) need to be defined by user. Chu et al. (1997, 2002) compute auto-correlation functions from historical observational data to fit the Gaussian function and get de-correlation scales for the B matrix. Recent studies show that some variables such as upper ocean current speed do not satisfy the normal distribution, but the Weibull distribution (Chu 2008, 2009).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, P.C., Fan, C. & Margolina, T. Ocean spectral data assimilation without background error covariance matrix. Ocean Dynamics 66, 1143–1163 (2016). https://doi.org/10.1007/s10236-016-0971-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-016-0971-x

Keywords

Navigation