Skip to main content

Advertisement

Log in

Numerical studies of dispersion due to tidal flow through Moskstraumen, northern Norway

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

The effect of horizontal grid resolution on the horizontal relative dispersion of particle pairs has been investigated on a short time scale, i.e. one tidal M 2 cycle. Of particular interest is the tidal effect on dispersion and transports in coastal waters where small-scale flow features are important. A three-dimensional ocean model has been applied to simulate the tidal flow through the Moskstraumen Maelstrom outside Lofoten in northern Norway, well known for its strong current and whirlpools (Gjevik et al., Nature 388(6645):837–838, 1997; Moe et al., Cont Shelf Res 22(3):485–504, 2002). Simulations with spatial resolution down to 50 m have been carried out. Lagrangian tracers were passively advected with the flow, and Lyapunov exponents and power law exponents have been calculated to analyse the separation statistics. It is found that the relative dispersion of particles on a short time scale (12–24 h) is very sensitive to the grid size and that the spatial variability is also very large, ranging from 0 to 100 km2 over a distance of 100 m. This means that models for prediction of transport and dispersion of oil spills, fish eggs, sea lice etc. using a single diffusion coefficient will be of limited value, unless the models actually resolves the small-scale eddies of the tidal current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Aadlandsvik B (1994) Modelling the transport of cod larvae from the Lofoten area. ICES Mar Sci Symp 198:379–392

    Google Scholar 

  • Afanasyev YD, Peltier WR (2001a) On breaking internal waves over the sill in knight inlet. Proc R Soc Lond 457:2799–2825

    Article  Google Scholar 

  • Afanasyev YD, Peltier WR (2001b) Reply to comment on the paper on breaking internal waves over the sill in knight inlet. Proc R Soc Lond 457:2831–2834

    Article  Google Scholar 

  • Aldridge JN, Davies AM (1993) A high-resolution three-dimensional hydrodynamic tidal model of the Eastern Irish Sea. ICES Mar Sci Symp 23(2):207–224

    Google Scholar 

  • Amundrud TL, Murray AG (2009) Modelling sea lice dispersion under varying environmental forcing in a Scottish sea loch. J Fish Dis 32(1):27–44

    Article  Google Scholar 

  • Berntsen J (2000) Users guide for a modesplit σ-coordinate numerical ocean model. Technical report, Technical Report 135, Dept of Applied Mathematics, University of Bergen, Johs. Bruns gt.12, N-5008. Bergen, Norway, p 48

  • Berntsen J, Xing JX, Davies AM (2008) Numerical studies of internal waves at a sill: sensitivity to horizontal grid size and subgrid scale closure. Cont Shelf Res 28(10–11):1376–1393

    Article  Google Scholar 

  • Berntsen J, Xing JX, Davies AM (2009) Numerical studies of flow over a sill: sensitivity of the non-hydrostatic effects to the grid size. Ocean Dyn 59(6):1043–1059

    Article  Google Scholar 

  • Berntsen H, Kowalik Z, S\(\ae\)lid S, Sørli K (1981) Efficient numerical-simulation of ocean hydrodynamics by a splitting procedure. Model Identif Control 2(4):181–199

    Google Scholar 

  • Blumberg AF, Mellor GL (1987) A description of a three-dimensional coastal ocean circulation model. In: Heaps NS (ed) Coastal and estuarine sciences, vol 4. Three-dimensional coastal ocean models. Xi+208p. American Geophysical Union, Washington, D.C. Illus, pp 1–16

    Google Scholar 

  • Burchard H, Rennau H (2008) Comparative quantification of physically and numerically induced mixing in ocean models. Ocean Model 20(3):293–311

    Article  Google Scholar 

  • Cummins PF, Vagle S, Armi L, Farmer D (2003) Stratified flow over topography: upstream influence and generation of nonlinear waves. Proc R Soc Lond 459:1467–1487

    Article  Google Scholar 

  • Davies AM, Jones JE (1996) Sensitivity of tidal bed stress distributions, near-bed currents, overtides, and tidal residuals to frictional effects in the Eastern Irish Sea. J Phys Oceanogr 26(12):2553–2575

    Article  Google Scholar 

  • Davies AM, Xing J (2007) On the influence of stratification and tidal forcing upon mixing in sill regions. Ocean Dyn 57:431–451

    Article  Google Scholar 

  • Davies AM, Kwong SCM, Flather RA (2000) On determining the role of wind wave turbulence and grid resolution upon computed storm driven currents. Cont Shelf Re 20(14):1825–1888

    Article  Google Scholar 

  • Engedahl H, Aadlandsvik B, Martinsen EA (1998) Production of monthly mean climatological archives for the Nordic Seas. J Mar Syst 14(1–2):1–26

    Article  Google Scholar 

  • Farmer DM, Freeland HJ (1983) The physical oceanography of fjords. Prog Oceanogr 12:147–220

    Article  Google Scholar 

  • Farmer DM, Armi L (1999) Stratified flow over topography: the role of small-scale entrainment and mixing in flow establishment. Proc R Soc Lond 455:3221–3258

    Article  Google Scholar 

  • Farmer DM, Armi L (2001) Stratified flow over topography: models versus observations. Proc R Soc Lond 457:2827–2830

    Article  Google Scholar 

  • Geyer WR, Signell RP (1992) A reassessment of the role of tidal dispersion in estuaries and bays. Estuaries 15(2):97–108

    Article  Google Scholar 

  • Gillibrand PA Willis KJ (2007) Dispersal of sea louse larvae from salmon farms: modelling the influence of environmental conditions and larval behaviour. Aquat Biol 1(1):63–75

    Google Scholar 

  • Gjevik B (1996) Models of drift and dispersion in tidal flows. In: Grue J et al (eds) Waves and nonlinear processes in hydrodynamics, 34. Kluwer Academic, Dordrecht, pp 343–354

    Google Scholar 

  • Gjevik B, Moe H, Ommundsen A (1997) Sources of the maelstrom. Nature 388(6645):837–838

    Article  Google Scholar 

  • Haidvogel D, Beckmann A (1999) Numerical ocean circulation modeling. Series on environmental science and management, vol 2. Imperial College Press, London, p 318

    Google Scholar 

  • Haney RL (1991) On the pressure-gradient force over steep topography in sigma coordinate ocean models. J Phys Oceanor 21(4):610–619

    Article  Google Scholar 

  • Haza AC, Griffa A, Martin P, Molcard A, Ozgokmen TM, Poje AC, Barbanti R, Book JW, Poulain PM, Rixen M, Zanasca P (2007) Model-based directed drifter launches in the Adriatic Sea: results from the dart experiment. Geophys Res Lett 34(10)

  • Inall M, Cottier F, Griffiths C, Rippeth T (2004) Sill dynamics and energy transformation in a jet fjord. Ocean Dyn 54:307–314

    Article  Google Scholar 

  • Inall M, Rippeth T, Griffiths C, Wiles P (2005) Evolution and distribution of TKE production and dissipation within stratified flow over topography. Geophys Res Lett 32:L08607. doi:10.1029/2004GL022289

    Article  Google Scholar 

  • Jones JE, Davies AM (2008) On the modification of tides in shallow water regions by wind effects. J Geophys Res Ocean 113(C5):C05014. doi:10.1029/2007JC004310

    Article  Google Scholar 

  • Klymak JM, Gregg MC (2001) Three-dimensional nature of flow near a sill. J Geophys Res 106:22295–22311

    Article  Google Scholar 

  • Klymak JM, Gregg MC (2003) The role of upstream waves and a downstream density pool in the growth of lee waves: stratified flow over the knight inlet sill. J Phys Oceanogr 33:1446–1461

    Article  Google Scholar 

  • Klymak JM, Gregg MC (2004) Tidally generated turbulence over the knight inlet sill. J Phys Oceanogr 34:1135–1151

    Article  Google Scholar 

  • Kowalik Z, Murty TS (1993) Numerical modeling of ocean dynamics. Advanced series on ocean engineering, vol 5. World Scientific, Singapore

    Google Scholar 

  • LaCasce JH (2008) Statistics from Lagrangian observations. Prog Oceanogr 77(1):1–29

    Article  Google Scholar 

  • Lamb KG (2004) On boundary-layer separation and internal wave generation at the knight inlet sill. Proc R Soc Lond 460:2305–2337

    Article  Google Scholar 

  • Martinsen EA, Engedahl H (1987) Implementation and testing of a lateral boundary scheme as an open boundary-condition in a barotropic ocean model. Coast Eng 11(5–6):603–627

    Article  Google Scholar 

  • Mellor G (1996) User guide for three-dimensional, primitive equation, numerical ocean model. Technical report, Technical report, Princeton University.

  • Mellor GL, Yamada T (1982) Development of a turbulence closure-model for geophysical fluid problems. Rev Geophys 20:851–875

    Article  Google Scholar 

  • Mellor GL, Oey LY, Ezer T (1998) Sigma coordinate pressure gradient errors and the seamount problem. J Atmos Ocean Technol 15(5):1122–1131

    Article  Google Scholar 

  • Mitchelson-Jacob G, Sundby S (2001) Eddies of Vestfjorden, Norway. Cont Shelf Res 21(16–17):1901–1918

    Article  Google Scholar 

  • Moe H, Ommundsen A, Gjevik B (2002) A high resolution tidal model for the area around the Lofoten Islands, northern Norway. Cont Shelf Res 22(3):485–504

    Article  Google Scholar 

  • Ommundsen A (2002) Models of cross shelf transport introduced by the Lofoten Maelstrom. Cont Shelf Res 22(1):93–113

    Article  Google Scholar 

  • Orre S, Gjevik B, Lacasce JH (2006) Characterizing chaotic dispersion in a coastal tidal model. Cont Shelf Res 26(12–13):1360–1374

    Article  Google Scholar 

  • Poje AC, Haza AC, Özgökmen TM, Magaldi MG, and Garraffo ZD (2010) Resolution dependent relative dispersion statistics in a hierarchy of ocean models. Ocean Model 31(1–2):36–50

    Article  Google Scholar 

  • Proctor R, Elliot AJ, Flather RA (1994) Forecast and hindcast simulations of the Braer oil-spill. Mar Pollut Bull 28(4):219–229

    Article  Google Scholar 

  • Reed M, Ekrol N, Rye H, Turner L (1999a) Oil spill contingency and response (Oscar) analysis in support of environmental impact assessment offshore Namibia. Spill Sci Technol Bull 5(1):29–38

    Article  Google Scholar 

  • Reed M, Johansen O, Brandvik PJ, Daling P, Lewis A, Fiocco R, Mackay D, Prentki R (1999b) Oil spill modeling towards the close of the 20th century: overview of the state of the art. Spill Sci Technol Bull 5(1):3–16

    Article  Google Scholar 

  • Rennau H, Burchard H (2009) Quantitative analysis of numerically induced mixing in a coastal model application. Ocean Dyn 59(5):671–687

    Article  Google Scholar 

  • Ridderinkhof H, Zimmerman JTF (1992) Chaotic stirring in a tidal system. Science 258(5085):1107–1111

    Article  Google Scholar 

  • Signell RP, Geyer WR (1991) Transient eddy formation around headlands. J Geophys Oceans 96(C2):2561–2575

    Article  Google Scholar 

  • Signell RP, Butman B (1992) Modeling tidal exchange and dispersion in Boston Harbor. J Geophys Oceans 97(C10):15591–15606

    Article  Google Scholar 

  • Skar\(\eth\)hamar J, Slagstad D, Edvardsen A (2007) Plankton distributions related to hydrography and circulation dynamics on a narrow continental shelf off northern Norway. Estuar Coast Shelf Sci 75(3):381–392

    Article  Google Scholar 

  • Slagstad D, Tande KS, (2007) Structure and resilience of overwintering habitats of Calanus finmarchicus in the Eastern Norwegian Sea. Deep-Sea Res Part II Top Stud Oceanogr 54(23–26):2702–2715

    Article  Google Scholar 

  • Smagorinsky J (1963) General circulation experiments with the primitive equations. Mon Weather Rev 91(3):99–164

    Article  Google Scholar 

  • Stashchuk N, Inall M, Vlasenko V (2007) Analysis of supercritical stratified tidal flow in a Scottish fjord. J Phys Oceanogr 37:1793–1810

    Article  Google Scholar 

  • Thorpe SA (2005) The turbulent ocean. Cambridge University Press, Cambridge

    Google Scholar 

  • Vikebø F, Jorgensen C, Kristiansen T, Fiksen O (2007) Drift, growth, and survival of larval Northeast Arctic cod with simple rules of behaviour. Mar Ecol Prog Ser 347:207–219

    Article  Google Scholar 

  • Vlasenko VI, Stashchuk N, Hutter K (2005) Baroclinic tides: theoretical modeling and observational evidence. Cambridge monographs on mechanics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Wahl T (1995) The Maelström seen from space. Nord Space Act 2–3:22–23

    Google Scholar 

  • Xing J, Davies A (2006a) Processes influencing tidal mixing in the region of sills. Geophys Res Lett 33(4):L04603. doi:10.1029/2005GL025226

    Article  Google Scholar 

  • Xing JX, Davies AM (2006b) Influence of stratification and topography upon internal wave spectra in the region of sills. Geophys Res Lett 33(23):L23606. doi:10.1029/2006GL028092

    Article  Google Scholar 

  • Xing JX, Davies AM, (2007) On the importance of non-hydrostatic processes in determining tidally induced mixing in sill regions. Cont Shelf Res 27:2162–2185

    Article  Google Scholar 

  • Yang HQ, Przekwas AJ (1992) A comparative-study of advanced shock-capturing schemes applied to Burgers-equation. J Comput Phys 102(1):139–159

    Article  Google Scholar 

  • Zimmerman JTF (1986) The tidal whirlpool—a review of horizontal dispersion by tidal and residual currents. Neth J Sea Res 20(2–3):133–154

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the Research Council of Norway. The Norwegian Hydrographic Service, Stavanger, has provided us with a high-resolution depth matrix.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birgit Kjoss Lynge.

Additional information

Responsible Editor: John Grue

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lynge, B.K., Berntsen, J. & Gjevik, B. Numerical studies of dispersion due to tidal flow through Moskstraumen, northern Norway. Ocean Dynamics 60, 907–920 (2010). https://doi.org/10.1007/s10236-010-0309-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-010-0309-z

Keywords

Navigation