Skip to main content
Log in

Short-range prediction experiments of the Kuroshio path variabilities south of Japan

  • Original Paper
  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

Assimilation and prediction experiments of the Kuroshio path variability south of Japan were conducted to investigate the predictability of the Kuroshio path. The assimilation and prediction system is composed of an eddy-resolving model and a three-dimensional variational analysis scheme with vertical coupled temperature–salinity empirical orthogonal function modes. The sea surface height (SSH) variability and the variations of the Kuroshio path of the assimilation fields are in good agreement with those observed. The results of the assimilation are then used as the initial conditions for 138 cases of 90-day prediction experiments conducted from 1993 to 2004. The predictive limit of our system is assessed by the SSH anomaly in the assimilation field and is found to be around 40–60 days, which is much longer than that of the persistence. The prediction results show good performance in the transition stage from a straight to a meandering path. For example, a large meandering event that occurred in August 2004 is successfully predicted in a 2-month forecast. Two types of failure cases are investigated. One is a case where the eastward propagation speed of the meander is faster than a real state. The dynamical response of the model to the assimilation revealed that an initial shock, caused by the dynamically unbalanced initial condition, induces the fast eastward propagation of the meander. The other case exhibits an unrealistic meander. In this case, a cold anomaly at an intermediate layer in the initial condition grows rapidly and results in the unrealistic meander. This implies that the Kuroshio path south of Japan has a chaotic nature. These facts revealed by the failure cases give us some insight for improving the predictive skill of the Kuroshio path variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akitomo K, Masuda S, Awaji T (1997) Kuroshio path variation south of Japan: stability of the paths in a multiple equilibrium regime. J Oceanogr 53:129–142

    Google Scholar 

  • Ambe D, Imawaki S, Uchida H, Ichikawa K (2004) Estimating the Kuroshio axis south of Japan using combination of satellite altimetry and drifting buoys. J Oceanogr 60:375–382

    Article  Google Scholar 

  • Arakawa A (1966) Computational design for long-term numerical integration of the equations of fluid motion: two-dimensional incompressible flow. Part I. J Comput Phys 1:119–143

    Article  Google Scholar 

  • Bloom SC, Takacs LL, Da Silva AM, Ledvina D (1996) Data assimilation using incremental analysis updates. Mon Weather Rev 124:1256–1271

    Article  Google Scholar 

  • Brasseur P, Blayo E, Verron J (1996) Predictability experiments in the North Atlantic Ocean: outcome of a quasi-geostrophic model with assimilation of TOPEX/POSEIDON altimeter data. J Geophys Res 101:14161–14174

    Article  Google Scholar 

  • Collecte, Localisation, Satellites (CLS) (2004) SSALTO/DUACS user handbook: (M)SLA and (M)ADT near-real time and delayed time products. CLS-DOS-NT-04.103, Toulouse, p 42

    Google Scholar 

  • Ebuchi N, Hanawa K (2001) Trajectory of mesoscale eddies in the Kuroshio recirculation region. J Oceanogr 57:471–480

    Article  Google Scholar 

  • Ebuchi N, Hanawa K (2003) Influence of mesoscale eddies on variations of the Kuroshio path south of Japan. J Oceanogr 59:25–36

    Article  Google Scholar 

  • Endoh T, Hibiya T (2000) Numerical study of the generation and propagation of trigger meanders of the Kuroshio south of Japan. J Oceanogr 56:409–418

    Article  Google Scholar 

  • Endoh T, Hibiya T (2001) Numerical simulation of the transient response of the Kuroshio leading to the large meander formation south of Japan. J Geophys Res 106:26833–26850

    Article  Google Scholar 

  • Fujii Y (2005) Preconditioned optimizing utility for large-dimensional analyses (POpULar). J Oceanogr 61:167–181

    Article  Google Scholar 

  • Fujii Y, Kamachi M (2003a) Three-dimensional analysis of temperature and salinity in the equatorial Pacific using a variational method with vertical coupled temperature–salinity EOF modes. J Geophys Res 108(C9):3297 DOI:10.1029/2002JC001745

    Article  Google Scholar 

  • Fujii Y, Kamachi M (2003b) A reconstruction of observed profiles in the sea east of Japan using vertical coupled temperature–salinity EOF modes. J Oceanogr 59:173–186

    Article  Google Scholar 

  • Fujii Y, Kamachi M (2003c) A nonlinear preconditioned quasi-Newton method without inversion of a first-guess covariance matrix in variational analysis. Tellus 55A:450–454

    Google Scholar 

  • Fujii Y, Ishizaki S, Kamachi M (2005) Application of nonlinear constraints in a three-dimensional variational ocean analysis. J Oceanogr 61:655–662

    Article  Google Scholar 

  • Fukumori I (2002) A partitioned Kalman filter and smoother. Mon Weather Rev 130:1370–1383

    Article  Google Scholar 

  • Griffies SM, Hallberg RW (2000) Biharmonic friction with a Smagrinsky-like viscosity for use in large-scale eddy-permitting ocean models. Mon Weather Rev 128:2935–2946

    Article  Google Scholar 

  • Hamilton D (1994) GTSPP builds an ocean temperature–salinity database. Earth Syst Monit 4(4):4–5

    Google Scholar 

  • Holland WR, Chow JC, Bryan FO (1998) Application of a third-order upwind scheme in the NCAR ocean model. J Climate 11:1487–1493

    Article  Google Scholar 

  • Hunke EC, Ducowicz JK (2002) The elastic–viscous–plastic model for sea ice dynamics. Mon Weather Rev 130:1848–1865

    Article  Google Scholar 

  • Hurlburt HE, Wallcraft AJ, Schmitz WJ, Hogan PJ, Metzger EJ (1996) Dynamics of the Kuroshio/Oyashio current system using eddy-resolving models of the North Pacific Ocean. J Geophys Res 101:941–976

    Article  Google Scholar 

  • Hurlburt HE, Smedstat OM, Rhodes RC, Cayula J-F, Barron CN, Metger EJ (2000) A feasibility demonstration of ocean model eddy-resolving nowcast/forecast skill using satellite altimeter data. NRL MR 7320-00-8235, Naval Research Laboratory, Stennis Space Center, Hancock, p 23

    Google Scholar 

  • Imawaki S, Gotoh M, Yoritaka H, Yoshioka N, Misumi A (1996) Detecting fluctuations of the Kuroshio axis south of Japan using TOPEX/POSEIDON altimeter data. J Oceanogr 52:69–92

    Article  Google Scholar 

  • Ishikawa I, Tsujino H, Hirabara M, Nakano H, Yasuda T, Ishizaki H (2005) Meteorological Research Institute Community Ocean Model (MRI.COM) manual. Technical reports of the Meteorological Research Institute, No.47. Meteorological Research Institute, Ibaraki (in Japanese)

    Google Scholar 

  • Ishizaki H, Motoi T (1999) Reevaluation of the Takano–Oonishi schemes for momentum advection on bottom relief in ocean models. J Atmos Ocean Technol 16:1994–2010

    Article  Google Scholar 

  • Kamachi M, Kuragano T, Sugimoto S, Yoshita K, Sakurai T, Nakano T, Usui N, Uboldi F (2004) Short-range prediction experiments with operational data assimilation system for the Kuroshio south of Japan. J Oceanogr 60:269–282

    Article  Google Scholar 

  • Kanamitsu M, Ebisuzaki W, Woollen J, Yang S-K, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP-DOE AMIP-II reanalysis(R-2). Bull Am Meteorol Soc 83:1631–1643

    Article  Google Scholar 

  • Kawabe M (1985) Sea level variations at the Izu Islands and typical stable paths of the Kuroshio. J Oceanogr Soc Japan 41:307–326

    Article  Google Scholar 

  • Kawabe M (1987) Spectral properties of sea level and time scale of Kuroshio path variations. J Oceanogr Soc Japan 43:111–123

    Article  Google Scholar 

  • Kawabe M (1995) Variations of current path, velocity, and volume transport of the Kuroshio in relation with the large meander. J Phys Oceanogr 25:3103–3117

    Article  Google Scholar 

  • Killworth PD, Stainforth D, Webb DJ, Paterson SM (1991) The development of a free-surface Bryan–Cox–Semtner ocean model. J Phys Oceanogr 21:1333–1348

    Article  Google Scholar 

  • Komori N, Awaji T, Ishikawa Y, Kuragano T (2003) Short-range forecast experiments of the Kuroshio path variabilities south of Japan using TOPEX/Poseidon altimetric data. J Geophys Res 108(C1):3010 DOI:10.1029/2001JC001282

    Article  Google Scholar 

  • Kondo J (1975) Air-sea bulk transfer coefficients in diabatic conditions. Boundary-Layer Meteorol 9:91–112

    Article  Google Scholar 

  • Kuragano T, Kamachi M (2000) Global statistical space-time scales of oceanic variability estimated from the TOPEX/POSEIDON altimetry data. J Geophys Res 105:955–974

    Article  Google Scholar 

  • Kuragano T, Kamachi M (2003) Altimeter’s capability of reconstructing realistic eddy fields using space-time optimum interpolatio. J Oceanogr 59:765–781

    Article  Google Scholar 

  • Masuda A (1982) An interpretation of the bimodal character of the stable Kuroshio path. Deep-Sea Res 29:471–484

    Article  Google Scholar 

  • Mellor GL, Ezer T (1991) A Gulf Stream model and an altimetry assimilation scheme. J Geophys Res 96:8779–8795

    Google Scholar 

  • Mellor GL, Kantha L (1989) An ice-ocean coupled model. J Geophys Res 94:10937–10954

    Article  Google Scholar 

  • Mitsudera H, Waseda T, Yoshikawa Y, Taguchi B (2001) Anticyclonic eddies and Kuroshio meander formation. Geophys Res Lett 28:2025–2028

    Article  Google Scholar 

  • Miyazawa Y, Guo X, Yamagata T (2004) Roles of mesoscale eddies in the Kuroshio paths. J Phys Oceanogr 34:2203–2222

    Article  Google Scholar 

  • Molteni F, Palmer TN, Petroliagis T (1996) The ECMWF ensemble prediction system: methodology and validation. Q J R Meteorol Soc 122:73–119

    Article  Google Scholar 

  • Moore AM, Mariano AJ (1999) The dynamics of error growth and predictability in a model of the gulf stream. Part I: singular vector analysis. J Phys Oceanogr 29:158–176

    Article  Google Scholar 

  • Noh Y, Kim H-J (1999) Simulations of temperature and turbulence structure of the oceanic boundary layer with the improved near-surface processes. J Geophys Res 104:15621–15634

    Article  Google Scholar 

  • Ocean Climate Laboratory (1999) World Ocean Atlas 1998 (WOA98) CD-ROM documentation version 1.0. Ocean Climate Laboratory, National Oceanographic Data Center, Silver Spring

  • Qiu B, Miao W (2000) Kuroshio path variation south of Japan: bimodality as a self-sustained internal oscillation. J Phys Oceanogr 30:2124–2137

    Article  Google Scholar 

  • Rhodes RC, Hurlburt HE, Wallcraft AJ, Barron CN, Martin PJ, Metzger EJ, Shriver JF, Ko DS, Smedstad OM, Cross SL, Kara AB (2002) Navy real-time global modering systems. Oceanography 15(1):29–43 (special issue—Navy operational models: ten years later)

    Google Scholar 

  • Robinson AR, Taft BA (1972) A numerical experiment for the path of the Kuroshio. J Mar Res 30:65–101

    Google Scholar 

  • Sekine A (1990) A numerical experiment on the path dynamics of the Kuroshio with reference to the formation of the large meander path south of Japan. Deep-Sea Res 37:359–380

    Article  Google Scholar 

  • Smith WHF, Sandwell DT (1997) Global sea floor topography from satellite altimetry and ship depth soundings. Science 277:1956–1962

    Article  Google Scholar 

  • Spall MA, Holland WR (1991) A nested primitive equation model for oceanic applications. J Phys Oceanogr 21:205–220

    Article  Google Scholar 

  • Taft BA (1972) Characteristics of the flow of the Kuroshio south of Japan. In: Stommel H, Yoshida K (eds) Kuroshio—its physical aspects. University of Tokyo Press, Tokyo, pp 165–216

    Google Scholar 

  • Toth Z, Kalnay E (1997) Ensemble forecasting at NCEP and the breeding method. Mon Weather Rev 125:3297–3319

    Article  Google Scholar 

  • Tsujino H, Usui N, Nakano H (2006) Dynamics of Kuroshio path variations in a high-resolution GCM. J Geophys Res (in revision)

  • Usui N, Ishizaki S, Fujii Y, Tsujino H, Yasuda T, Kamachi M (2006) Meteorological Research Institute multivariate ocean variational estimation (MOVE) system: some early results. Adv Space Res 37:806–822

    Article  Google Scholar 

  • Waseda T, Mitsudera H, Taguchi B, Yoshikawa Y (2003) On the eddy–Kuroshio interaction: meander formation process. J Geophys Res 108(C7):3220 DOI:10.1029/2002JC001583

    Article  Google Scholar 

  • Weatherly GL (1972) A study of the bottom boundary layer of the Florida current. J Phys Oceanogr 2:54–72

    Google Scholar 

  • Yoon J-H, Yasuda I (1987) Dynamics of the Kuroshio large meander: two-layer model. J Phys Oceanogr 17:66–81

    Article  Google Scholar 

  • Yoshida S (1964) A note on the variations of the Kuroshio during recent years. Bull Jpn Soc Fish Oceanogr 5:66–69 (in Japanese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norihisa Usui.

Additional information

Responsible editor: Jacques Verron

Rights and permissions

Reprints and permissions

About this article

Cite this article

Usui, N., Tsujino, H., Fujii, Y. et al. Short-range prediction experiments of the Kuroshio path variabilities south of Japan. Ocean Dynamics 56, 607–623 (2006). https://doi.org/10.1007/s10236-006-0084-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-006-0084-z

Keywords

Navigation