Skip to main content
Log in

Sufficient conditions yielding the Rayleigh Conjecture for the clamped plate

  • Published:
Annali di Matematica Pura ed Applicata (1923 -) Aims and scope Submit manuscript

Abstract

The Rayleigh Conjecture for the bilaplacian consists in showing that the clamped plate with least principal eigenvalue is the ball. The conjecture has been shown to hold in 1995 by Nadirashvili in dimension 2 and by Ashbaugh and Benguria in dimension 3. Since then, the conjecture remains open in dimension \(d\ge 4\). In this paper, we contribute to answer this question, and show that the conjecture is true in any dimension as long as some special condition holds on the principal eigenfunction of an optimal shape. This condition regards the mean value of the eigenfunction, asking it to be in some sense minimal. This main result is based on an order reduction principle allowing to convert the initial fourth order linear problem into a second order affine problem, for which the classic machinery of shape optimization and elliptic theory is available. The order reduction principle turns out to be a general tool. In particular, it is used to derive another sufficient condition for the conjecture to hold, which is a second main result. This condition requires the Laplacian of the optimal eigenfunction to have constant normal derivative on the boundary. Besides our main two results, we detail shape derivation tools allowing to prove simplicity for the principal eigenvalue of an optimal shape and to derive optimality conditions. Finally, because our first result involves the principal eigenfunction of a ball, we are led to compute it explicitly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Adolfsson, V.: \(L^2\)-integrability of second-order derivatives for Poisson’s equation in nonsmooth domains. Math. Scand. 70(1), 146–160 (1992). https://doi.org/10.7146/math.scand.a-12391

    Article  MathSciNet  Google Scholar 

  2. Antunes, P.R.S., Buoso, D., Freitas, P.: On the behavior of clamped plates under large compression. SIAM J. Appl. Math. 79(5), 1872–1891 (2019). https://doi.org/10.1137/19M1249606

    Article  MathSciNet  Google Scholar 

  3. Ashbaugh, M.S., Benguria, R.D.: On Rayleigh’s conjecture for the clamped plate and its generalization to three dimensions. Duke Math. J. 78(1), 1–17 (1995). https://doi.org/10.1215/S0012-7094-95-07801-6

    Article  MathSciNet  Google Scholar 

  4. Ashbaugh, M.S., Laugesen, R.S.: Fundamental tones and buckling loads of clamped plates. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 23(2), 383–402 (1996)

    MathSciNet  Google Scholar 

  5. Baricz, Á., Ponnusamy, S., Singh, S.: Cross-product of Bessel functions: monotonicity patterns and functional inequalities’. Proc. Indian Acad. Sci. Math. Sci. 128(3) (2018), Paper No. 36, 30. https://doi.org/10.1007/s12044-018-0398-z

  6. Bennett, A.: Symmetry in an overdetermined fourth order elliptic boundary value problem. SIAM J. Math. Anal. 17(6), 1354–1358 (1986). https://doi.org/10.1137/0517095

    Article  MathSciNet  Google Scholar 

  7. Buoso, D.: Analyticity and criticality results for the eigenvalues of the biharmonic operator. Geometric properties for parabolic and elliptic PDE’s, Springer Proc. Math. Stat., vol. 176, pp. 65–85. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41538-3_5

  8. Buoso, D., Lamberti, P.D.: Eigenvalues of polyharmonic operators on variable domains. ESAIM Control Optim. Calc. Var. 19(4), 1225–1235 (2013). https://doi.org/10.1051/cocv/2013054

    Article  MathSciNet  Google Scholar 

  9. Buoso, D., Lamberti, P.D.: On a classical spectral optimization problem in linear elasticity. New trends in shape optimization, vol. 166. Internat. Ser. Numer. Math., pp. 43–55. Birkhäuser/Springer, Cham (2015) https://doi.org/10.1007/978-3-319-17563-8_3

  10. Coffman, C.V., Duffin, R.J., Shaffer, D.H.: The fundamental mode of vibration of a clamped annular plate is not of one sign. In: Constructive Approaches to Mathematical Models (Proc. Conf. in honor of R. J. Duffin, Pittsburgh, Pa., 1978), pp. 267–277. Academic Press, New York-London-Toronto (1979)

  11. Dalmasso, R.: Un problème de symétrie pour une équation biharmonique. Ann. Fac. Sci. Toulouse Math. (5) 11(3), 45–53 (1990)

    Article  MathSciNet  Google Scholar 

  12. Duffin, R.J., Shaffer, D.H.: On the modes of vibration of a ring-shaped plate. Bull. Am. Math. Soc. 58(6), 652 (1952). https://doi.org/10.1090/S0002-9904-1952-09650-6

    Article  Google Scholar 

  13. Friedman, A., McLeod, B.: Strict inequalities for integrals of decreasingly rearranged functions. Proc. R. Soc. Edinb. Sect. A 102(3–4), 277–289 (1986). https://doi.org/10.1017/S0308210500026366

    Article  MathSciNet  Google Scholar 

  14. Gazzola, F., Grunau, H.-C., Sweers, G.: Polyharmonic boundary value problems, vol. 1991. Lecture Notes in Mathematics. Positivity preserving and nonlinear higher order elliptic equations in bounded domains, pp. xviii+423. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-12245-3

  15. Gradshteyn, I.S., Ryzhik, I.M.: Table of integrals, series, and products. Eighth. Translated from the Russian, Translation edited and with a preface by Daniel Zwillinger and Victor Moll, Revised from the seventh edition, pp. xlvi+1133. Elsevier/Academic Press, Amsterdam (2015)

  16. Haug, E.J., Rousselet, B.: Design sensitivity analysis in structural mechanics. II. Eigenvalue variations. J. Struct. Mech. 8(2), 161–186 (1980). https://doi.org/10.1080/03601218008907358

    Article  MathSciNet  Google Scholar 

  17. Henrot, A.: Extremum problems for eigenvalues of elliptic operators. Frontiers in Mathematics, p. x+202. Birkhäuser Verlag, Basel (2006). https://doi.org/10.1007/3-7643-7706-2

  18. Henrot, A., Pierre, M.: Variation et optimisation de formes, vol. 48. Mathématiques & Applications (Berlin). Une analyse géométrique, pp. xii+334. Springer, Berlin (2005). https://doi.org/10.1007/3-540-37689-5

  19. Ikebe, Y., Kikuchi, Y., Fujishiro, I.: Computing zeros and orders of Bessel functions. In: Proceedings of the International Symposium on Computational Mathematics (Matsuyama, 1990), vol. 38(1–3), pp. 169–184 (1991). https://doi.org/10.1016/0377-0427(91)90169-K

  20. Kawohl, B.: Rearrangements and convexity of level sets in PDE. Vol. 1150. Lecture Notes in Mathematics, pp. iv+136 (1985). Springer, Berlin. https://doi.org/10.1007/BFb0075060

  21. Kesavan, S.: Symmetrization & applications. Vol. 3. Series in Analysis, pp. xii+148. World Scientific Publishing Co. Pte. Ltd., Hackensack (2006). https://doi.org/10.1142/9789812773937

  22. Kristály, A.: Fundamental tones of clamped plates in nonpositively curved spaces. Adv. Math. 367, 107113, 39 (2020). https://doi.org/10.1016/j.aim.2020.107113

  23. Kristály, A.: Lord Rayleigh’s conjecture for vibrating clamped plates in positively curved spaces. Geom. Funct. Anal. 32(4), 881–937 (2022). https://doi.org/10.1007/s00039-022-00606-7

    Article  MathSciNet  Google Scholar 

  24. Lamberti, P.D., Lanza de Cristoforis, M.: A real analyticity result for symmetric functions of the eigenvalues of a domain dependent Dirichlet problem for the Laplace operator. J. Nonlinear Convex Anal. 5(1), 19–42 (2004)

    MathSciNet  Google Scholar 

  25. Leylekian, R.: Towards the Optimality of the Ball for the Rayleigh Conjecture Concerning the Clamped Plate. Arch. Ration. Mech. Anal. 248(2), Paper No. 28 (2024). https://doi.org/10.1007/s00205-024-01972-2

  26. Mohr, E.: Über die Rayleighsche Vermutung: unter allen Platten von gegebener Fläche und konstanter Dichte und Elastizität hat die kreisförmige den tiefsten Grundton. Ann. Mat. Pura Appl. (4) 104, 85–122 (1975). https://doi.org/10.1007/BF02417012

    Article  MathSciNet  Google Scholar 

  27. Nadirashvili, N.S.: Rayleigh’s conjecture on the principal frequency of the clamped plate. Arch. Ration. Mech. Anal. 129(1), 1–10 (1995). https://doi.org/10.1007/BF00375124

    Article  MathSciNet  Google Scholar 

  28. Ortega, J.H., Zuazua, E.: Generic simplicity of the spectrum and stabilization for a plate equation. SIAM J. Control Optim. 39(5), 1585–1614 (2000). https://doi.org/10.1137/S0363012900358483

    Article  MathSciNet  Google Scholar 

  29. Payne, L.E., Schaefer, P.W.: Duality theorems in some overdetermined boundary value problems. Math. Methods Appl. Sci. 11(6), 805–819 (1989). https://doi.org/10.1002/mma.1670110606

    Article  MathSciNet  Google Scholar 

  30. Serrin, J.: A symmetry problem in potential theory. Arch. Ration. Mech. Anal. 43, 304–318 (1971). https://doi.org/10.1007/BF00250468

    Article  MathSciNet  Google Scholar 

  31. Stollenwerk, K.: Existence of an optimal domain for minimizing the fundamental tone of a clamped plate of prescribed volume in arbitrary dimension. arXiv:2109.01455 (2021)

  32. Szegö, G.: On membranes and plates. Proc. Nat. Acad. Sci. USA 36, 210–216 (1950). https://doi.org/10.1073/pnas.36.3.210

    Article  MathSciNet  Google Scholar 

  33. Talenti, G.: Elliptic equations and rearrangements. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3(4), 697–718 (1976)

    MathSciNet  Google Scholar 

  34. Talenti, G.: On the first eigenvalue of the clamped plate. Ann. Mat. Pura Appl. (4) 129, 265–280 (1981). https://doi.org/10.1007/BF01762146

    Article  MathSciNet  Google Scholar 

  35. Tolsa, X.: Unique continuation at the boundary for harmonic functions in \(C^1\) domains and Lipschitz domains with small constant. Commun. Pure Appl. Math. 76(2), 305–336 (2023). https://doi.org/10.1002/cpa.22025

    Article  Google Scholar 

  36. Willms, N.B.: An isoperimetric inequality for the buckling of a clamped plate. Lecture at the Oberwolfach meeting on “Qualitative properties of PDE”(organized by H. Berestycki, B. Kawohl, and G. Talenti) (1995)

Download references

Acknowledgements

I would like to thank Enea Parini and François Hamel for their valued support and useful comments during the elaboration of this document. Let me thank Davide Buoso profusely for useful discussions and for having brought to my attention several interesting references on shape derivatives.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roméo Leylekian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Proposition 15

For readability, we ommit the subscript B in \(u_B\). According to [3], in B, the first eigenfunction is radially symmetric and of the form \(\forall r\in [0,R)\),

$$\begin{aligned} u(r)=\left( aJ_\nu (k r)+bI_\nu (k r)\right) r^{-\nu }, \end{aligned}$$

where \(k:=\Gamma (B)^{\frac{1}{4}}\). Then, using the identities \(J_\nu '(x)=\frac{\nu J_\nu (x)}{x}-J_{\nu +1}(x)\) and \(I_\nu '(x)=\frac{\nu I_\nu (x)}{x}+I_{\nu +1}(x)\) we find

$$\begin{aligned} \partial _r u(r)=\left( -aJ_{\nu +1}(kr)+bI_{\nu +1}(kr)\right) kr^{-\nu }. \end{aligned}$$

Now, for u to fulfill the condition \(u(R)=\partial _r u(R)=0\) although being non trivial, one observes that the matrix

$$\begin{aligned} M=\left( \begin{array}{cc} J_\nu (kR) &{} I_\nu (kR) \\ -J_{\nu +1}(kR) &{} I_{\nu +1}(kR) \end{array}\right) \end{aligned}$$

needs having a non trivial kernel. In other words, its determinant needs to vanish, hence

$$\begin{aligned} f_\nu (kR)=J_\nu (kR)I_{\nu +1}(kR)+J_{\nu +1}(kR)I_\nu (kR)=0. \end{aligned}$$

Conversely, as soon as k satisfies this equation, u will be solution of an eigenvalue problem in B with Dirichlet boundary conditions. Consequently, k is necessarily the lowest positive solution of this equation, meaning that \(kR=\gamma _\nu \). Hence \(\Gamma (B)=\gamma _\nu ^4/R^4\).

Furthermore, since \(I_\nu >0\) over \((0,\infty )\), \(M\ne 0\) and it has a one-dimensional kernel. By virtue of the identity \(u(R)=0\), the kernel is generated by the vector \((I_\nu (\gamma _\nu ),-J_\nu (\gamma _\nu ))\) or equivalently by the vector \(R^\nu (J_\nu (\gamma _\nu )^{-1},-I_\nu (\gamma _\nu )^{-1})\). In other words, there exists a real number \(\beta \) such that

$$\begin{aligned} \left( \begin{array}{c} a \\ b \end{array}\right) =\beta R^\nu \left( \begin{array}{c} J_\nu (\gamma _\nu )^{-1} \\ -I_\nu (\gamma _\nu )^{-1} \end{array}\right) . \end{aligned}$$

Finding the values of a and b is thus equivalent to determining \(\beta \). For that purpose, we use the normalisation of u, i.e.

$$\begin{aligned} \begin{aligned} 1=\int _B u^2=\beta ^2R^{2\nu }|\mathbb {S}^{d-1}|&\left[ J_\nu (\gamma _\nu )^{-2}\int _0^RJ_\nu (k r)^2r^{d-2\nu -1}\right. \\&\left. +I_\nu (\gamma _\nu )^{-2}\int _0^RI_\nu (k r)^2r^{d-2\nu -1}\right. \\&\left. -2J_\nu (\gamma _\nu )^{-1}I_\nu (\gamma _\nu )^{-1}\int _0^RI_\nu (kr)J_\nu (kr)r^{d-2\nu -1}\right] . \end{aligned} \end{aligned}$$
(21)

As \(d-2\nu -1=1\), it turns out that we need to compute the integral of product of Bessel functions against r. That’s why we use the Gradshteyn and Ryzhik collection [15, section 6.521, formula 1], that is, for all \(\alpha \ne \beta \in \mathbb {C}\) and \(\nu >-1\),

$$\begin{aligned} \begin{aligned} \int _0^1xJ_\nu (\alpha x)J_\nu (\beta x){} & {} =\frac{\beta J_{\nu -1}(\beta )J_\nu (\alpha )-\alpha J_{\nu -1}(\alpha )J_\nu (\beta )}{\alpha ^2-\beta ^2}\\{} & {} =\frac{\alpha J_{\nu +1}(\alpha )J_\nu (\beta )-\beta J_{\nu +1}(\beta )J_\nu (\alpha )}{\alpha ^2-\beta ^2}. \end{aligned} \end{aligned}$$
(22)

We apply this formula with \(\alpha =i\gamma _\nu \) and \(\beta =\gamma _\nu \), and find

$$\begin{aligned} \int _0^RI_\nu (k r)J_\nu (k r)r^{d-2\nu -1}=\frac{R^2}{2\gamma _\nu }[I_{\nu +1}(\gamma _\nu )J_\nu (\gamma _\nu )+J_{\nu +1}(\gamma _\nu )I_\nu (\gamma _\nu )]=\frac{R^2}{2\gamma _\nu }f_\nu (\gamma _\nu )=0. \end{aligned}$$

For the other integrals, we first remark that when (\(\alpha ,\beta \in \mathbb {R}\) and) \(\alpha \rightarrow \beta \) in (22), one obtains

$$\begin{aligned} \begin{aligned} \int _0^1 xJ_\nu (\beta x)^2&=\frac{J_\nu (\beta )^2}{2\beta }\frac{d}{d\beta }\left[ \frac{\beta J_{\nu +1}(\beta )}{J_\nu (\beta )}\right] \\&=\frac{1}{2}\left[ J_{\nu +1}(\beta )^2+J_\nu (\beta )^2-\frac{\nu }{\beta } J_{\nu +1}(\beta )J_\nu (\beta )\right] . \end{aligned} \end{aligned}$$
(23)

Hence, with \(\beta =\gamma _\nu \), we find

$$\begin{aligned} \int _0^RJ_\nu (k r)^2r^{d-2\nu -1}=\frac{R^2}{2}\left[ J_{\nu +1}(\gamma _\nu )^2+J_\nu (\gamma _\nu )^2-\frac{\nu }{\gamma _\nu } J_{\nu +1}(\gamma _\nu )J_\nu (\gamma _\nu )\right] . \end{aligned}$$

But because both extremal members in (23) depend holomorphicly on \(\beta \), this formula remains true even when \(\beta \in {\mathbb {C}}\) thanks to the isolation of zeros, hence, we can apply it to \(\beta =i\gamma _\nu \):

$$\begin{aligned} \int _0^RI_\nu (k r)^2r^{d-2\nu -1}=\frac{R^2}{2}\left[ -I_{\nu +1}(\gamma _\nu )^2+I_\nu (\gamma _\nu )^2-\frac{\nu }{\gamma _\nu } I_{\nu +1}(\gamma _\nu )I_\nu (\gamma _\nu )\right] . \end{aligned}$$

Finally, since \(f_\nu (\gamma _\nu )=0\), the term between brackets in (21) becomes

$$\begin{aligned}{} & {} \frac{R^2}{2} \left[ J_\nu (\gamma _\nu )^{-2}\left( J_{\nu +1}(\gamma _\nu )^2+J_\nu (\gamma _\nu )^2-\frac{\nu }{\gamma _\nu }J_{\nu +1}(\gamma _\nu )J_\nu (\gamma _\nu )\right) \right. \\{} & {} \qquad \left. +I_\nu (\gamma _\nu )^{-2}\left( -I_{\nu +1}(\gamma _\nu )^2+I_\nu (\gamma _\nu )^2-\frac{\nu }{\gamma _\nu }I_{\nu +1}(\gamma _\nu )I_\nu (\gamma _\nu )\right) \right] \\{} & {} \quad = \frac{R^2}{2} \left[ 2+\left( \frac{J_{\nu +1}}{J_\nu }(\gamma _\nu )-\frac{I_{\nu +1}}{I_\nu }(\gamma _\nu )-\frac{\nu }{\gamma _\nu }\right) \left( \frac{J_{\nu +1}}{J_\nu }(\gamma _\nu )+\frac{I_{\nu +1}}{I_\nu }(\gamma _\nu )\right) \right] \\{} & {} \quad = R^2. \end{aligned}$$

Using \(|\mathbb {S}^{d-1}|R^d=d|B|\), we have that \(\beta ^{-2}=|\mathbb {S}^{d-1}|R^{2\nu +2}=d|B|\), hence

$$\begin{aligned} a=\frac{R^{\nu }}{J_\nu (\gamma _\nu )\sqrt{d|B|}},\qquad b=-\frac{R^{\nu }}{I_\nu (\gamma _\nu )\sqrt{d|B|}}. \end{aligned}$$
(24)

In particular,

$$\begin{aligned} u(r)=\frac{1}{\sqrt{d|B|}}\left( \frac{J_\nu (k r)}{J_\nu (\gamma _\nu )}-\frac{I_\nu (k r)}{I_\nu (\gamma _\nu )}\right) \left( \frac{r}{R}\right) ^{-\nu }, \end{aligned}$$

which corresponds to (17). After having obtained the expression of u, we would like to compute its integral. Observing that

$$\begin{aligned} \int _B u=\frac{1}{\Gamma (B)}\int _B\Delta ^2 u=\frac{1}{\Gamma (B)}\int _{\partial B}\partial _n\Delta u=\frac{R^{d-1}|\mathbb {S}^{d-1}|}{\gamma _\nu ^4/R^4}\partial _r\Delta u(R), \end{aligned}$$

it remains only to compute

$$\begin{aligned} \partial _r\Delta u(r)=[aJ_{\nu +1}(k r)+bI_{\nu +1}(k r)]k^3r^{-\nu }, \end{aligned}$$

for which we used the identities \(J_{\nu +1}'(x)=J_\nu (x)-\frac{\nu +1}{x}J_{\nu +1}(x)\) and \(I_{\nu +1}'(x)=I_\nu (x)-\frac{\nu +1}{x}I_{\nu +1}(x)\). As a result, we get

$$\begin{aligned} \int _B u =&\frac{R^{d-1}|\mathbb {S}^{d-1}|}{\gamma _\nu ^4/R^4}\frac{\gamma _\nu ^3/R^3}{\sqrt{d|B|}}\left[ \frac{J_{\nu +1}}{J_\nu }(\gamma _\nu )-\frac{I_{\nu +1}}{I_\nu }(\gamma _\nu )\right] \\ =&\frac{\sqrt{d|B|}}{\gamma _\nu }\left[ \frac{J_{\nu +1}}{J_\nu }(\gamma _\nu )-\frac{I_{\nu +1}}{I_\nu }(\gamma _\nu )\right] . \end{aligned}$$

Note that the last equality in (18) comes from the fact that \(f_\nu (\gamma _\nu )=0\). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leylekian, R. Sufficient conditions yielding the Rayleigh Conjecture for the clamped plate. Annali di Matematica (2024). https://doi.org/10.1007/s10231-024-01454-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10231-024-01454-y

Keywords

Mathematics Subject Classification

Navigation