Skip to main content
Log in

Existence of a strong solution for the 2D four-field RMHD equations

  • Published:
Annali di Matematica Pura ed Applicata (1923 -) Aims and scope Submit manuscript

Abstract

In this paper, we investigated the two-dimensional, four-field reduced magnetohydrodynamics equations that are used to examine the tearing instability and magnetic reconnection of phenomena in plasmas. The generalized Ohm’s law is used in the derivation of the 2D four-field RMHD equations. We established the existence and uniqueness of a strong solution for the 2D four-field RMHD equations under periodic boundary conditions during some time interval in Sobolev-Slobodetskiĭ space with the help of successive approximations and \( a\ priori\) estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, Cambridge (1975)

    Google Scholar 

  2. Agmon, S.: It Lectures on Elliptic Boundary Value Problems. Van Nostrand, Princeton (1965)

    Google Scholar 

  3. Agullo, O., Muraglia, M., Poy\({\acute{e}}\), A., Benkadda, S., Yagi, M., Garbet, X., Sen, A.: A signature for turbulence driven magneteic islands. Phys. Plasmas 21 (2014)

  4. Arakawa, A.: Computational design for long-term numerical integration of the equations of fluid motion: two-dimensional incompressible flow. Part I. J. Comput. Phys. 1, 119–143 (1966)

    Article  Google Scholar 

  5. Brezis, H.: Analyse Fonctionnelle, Théorie et Applications. Masson, Paris (1983)

    Google Scholar 

  6. Casella, E., Secchi, P., Trebeschi, P.: Global existence of 2D slightly compressible viscous magneto-fluid motion, Portugaliae. Mathematica 59, 67–89 (2002)

    MathSciNet  Google Scholar 

  7. Casella, E., Secchi, P., Trebeschi, P.: Global classical solutions for MHD system. J. Math. Fluid Mech. 5, 70–91 (2003)

    Article  MathSciNet  Google Scholar 

  8. Casella, E., Trebeschi, P.: A global existence result in Sobolev spaces for MHD system in the half-plane. Rend. Sem. Mat. Univ. Padova 108, 79–91 (2002)

    MathSciNet  Google Scholar 

  9. Deluzet, F., Negulescu, C., Ottaviani, M., Possanner, S.: Numerical study of the plasma tearing instability on the resistive time scale. J. Comp. Phys. 280, 602–625 (2015)

    Article  MathSciNet  Google Scholar 

  10. Dewhurst, J.M., Hnat, B., Dendy, R.O.: Finite Larmor radius effects on test particle transport in drift wave-zonal flow turbulence. Plasma Phys. Control. Fusion 52(2), 025004 (2010)

    Article  Google Scholar 

  11. Duvaut, G., Lions, J.-L.: Inéquations en thermoélasticité et magnétohydrodynamique. Arch. Rational Mech. Anal. 46, 241–279 (1972)

    Article  MathSciNet  Google Scholar 

  12. Evans, L.C.: Partial Differential Equations, 2nd edn. American Mathematical Society, Providence (2010)

    Google Scholar 

  13. Friedman, A.: Partial Differential Equations. Holt, Rinehart and Winston Inc, New York (1969)

    Google Scholar 

  14. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin, Heidelberg, New York (2001)

    Book  Google Scholar 

  15. Grasso, D., Ottaviani, M., Porcelli, F.: Linear stability and mode structure of drift tearing modes. Phys. Plasmas 8, 4306–4317 (2001)

    Article  Google Scholar 

  16. Guo, B., Zhang, L.: Decay of solutions to magnetohydrodynamics equations in two space dimensions. Proc. R. Soc. Lond. A 449, 79–91 (1995)

    Article  MathSciNet  Google Scholar 

  17. Jackson, D.J.: Classical Electrodynamics, 2nd edn. John Wiley and Sons, London (1975)

    Google Scholar 

  18. Johnston, H., Liu, J.G.: Accurate, stable and efficient Navier-Stokes solvers based on explicit treatment of the pressure term. J. Comput. Phys. 199, 221–259 (2004)

    Article  MathSciNet  Google Scholar 

  19. Karniadakis, G.E., Israeli, M., Orszag, S.A.: High-order splitting methods for the incompressible Navier-Stokes equations. J. Comput. Phys. 97, 414–443 (1991)

    Article  MathSciNet  Google Scholar 

  20. Kondo, S., Tani, A.: Initial boundary value problem for model equations of resistive drift wave turbulence. SIAM J. Math. Anal. 43, 925–943 (2011)

    Article  MathSciNet  Google Scholar 

  21. Kondo, S.: Global-in-time existence results for the two-dimensional Hasegawa-Wakatani equations. Ann. Mat. Pura Appl. 197, 1799–1819 (2018)

    Article  MathSciNet  Google Scholar 

  22. Kozono, H.: Weak and classical solutions of the two-dimensional magnetohydrodynamic equations. Tohikou Math. J. 41, 471–488 (1989)

    MathSciNet  Google Scholar 

  23. Kraus, M., Tassi, E., Grasso, D.: Variational integrators for reduced magnetohydrodynamics. J. Comput. Phys. 321, 435–458 (2016)

    Article  MathSciNet  Google Scholar 

  24. Ladyzhenskaya, O.A.: The Boundary Value Problems of Mathematical Physics. Springer, New York (1985)

    Book  Google Scholar 

  25. Ladyzhenskaya, O.A., Solonnikov, V.A., Ural’seva, N.N.: Linear and Quasilinear Equations of Parabolic Type. AMS, Providence, RI (1968)

    Book  Google Scholar 

  26. Longcope, D.W., Strauss, H.R.: The coalescence instability and the development of current sheets in two-dimensional magnetohydrodynamics. Phys. Fluids 135, 2858–2869 (1993)

    Article  MathSciNet  Google Scholar 

  27. Loureiro, N.F., Cowley, S.C., Dorland, W.D., Haines, M.G., Schekochihin, A.A.: X-point collapse and saturation in the nonlinear tearing mode reconnection. Phys. Rev. Lett. 95, 235003 (2005)

    Article  Google Scholar 

  28. Muraglia, M., Agullo, O., Benkadda, S., Garbet, X., Beyer, P., Sen, A.: Nonlinear dynamics of magnetic islands imbedded in small scale turbulence. Phys. Rev. Lett. 103, 145001 (2009)

    Article  Google Scholar 

  29. Muraglia, M., Agullo, O., Benkadda, S., Yagi, M., Garbet, X., Sen, A.: Generation and amplification of magnetic islands by drift interchange turbulence. Phys. Rev. Lett. 107, 095003 (2011)

    Article  Google Scholar 

  30. Naulin, V., Nielsen, A.H.: Accuracy of spectral and finite difference schemes in 2D advection problems. SIAM J. Sci. Comput. 25, 104–126 (2003)

    Article  MathSciNet  Google Scholar 

  31. Numata, R., Ball, R., Dewar, R.L.: Bifurcation in electrostatic resistive drift wave turbulence. Phys. Plasmas 14 (2007)

  32. Ottaviani, M., Porcelli, F., Grasso, D.: Multiple states of nonlinear drift-tearing islands. Phys. Rev. Lett. 93, 075001 (2004)

    Article  Google Scholar 

  33. Porcelli, F., Borgogno, D., Califano, F., Grasso, D., Ottaviani, M., Pegoraro, F.: Recent advances in collisionless magnetic reconnection. Plasma Phys. Control. Fusion 44, B389–B405 (2002)

    Article  Google Scholar 

  34. Schonbek, M.E., Schonbek, T.P., S\(\ddot{u}\)li, E,: Large-time behaviour of solutions to the magneto-hydrodynamics equations. Math. Ann. 304, 717–756 (1996)

  35. Sermange, M., Temam, R.: Some mathematical questions related to the MHD equations. Commun. Pure Appl. Math. 36, 635–664 (1983)

    Article  MathSciNet  Google Scholar 

  36. Solonnikov, V.A.: On boundary value problems for linear parabolic systems of differential equations of general form. Trudy Math. Inst. Steklov 83, 3–163 (1965)

    MathSciNet  Google Scholar 

  37. Solonnikov, V.A.: English translation. Proc. Steklov Inst. Math. 83, 1–184 (1965)

    Google Scholar 

  38. Strauss, H.R.: Nonlinear, three-dimensional magneto-hydrodynamics of noncircular tokamaks. Phys. Fluids 19, 134–140 (1976)

    Article  Google Scholar 

  39. Trebeschi, P.: On the slightly compressible MHD system in the half-plane. Commun. Pure Appl. Anal. 3, 97–113 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Naoto Kajiwara of Gifu University in Japan for his valuable comments and thank Mr. Daijiro Sonoda because the cutoff function \(F(x_2)\) that we used in the numerical simulation in Appendix A 2 was developed as a part of his Master’s thesis (in 2017) at the University of Electro-Communications in Japan under the supervision of Professor Tatsuno Tomoya. The authors would also like to thank the reviewer for helpful comments and suggestions. The present study was partially supported by KAKENHI Grant No. 20K03745 from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shintaro Kondo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A1. Derivation of the reduced MHD equations (2)

Let us consider the following MHD equations:

$$\begin{aligned} v_t + (v \cdot \nabla )v = - \nabla p + J \times B + D \Delta v, \end{aligned}$$
(A.1)
$$\begin{aligned} \nabla \cdot v =0, \end{aligned}$$
(A.2)
$$\begin{aligned} B_t = \nabla \times ( v \times B - \eta J), \end{aligned}$$
(A.3)
$$\begin{aligned} \nabla \cdot B =0, \end{aligned}$$
(A.4)
$$\begin{aligned} \nabla \times B =J, \end{aligned}$$
(A.5)

where \(x = (x_1, x_2)\), \((x, x_3 ) \in \mathbf{R^3}\), \(\nabla = \left( \partial _1, \partial _2, \partial _3 \right) \), and \(\Delta = \partial _{11}^2 + \partial _{22}^2 + \partial _{33}^2 \). Here \(v = v(x,t) = (v_1(x,t), v_2(x,t), 0)\), \(B = B(x,t) = (B_1(x,t), B_2(x,t), 0)\), \(J=J(x,t)\), and \(p=p(x,t)\) denote the unknown velocity of the fluid, the magnetic field, the current density, and the pressure of the fluid. The density of the fluid is \(\rho _0=1\). Here, (A.3) comes from Faraday’s law \(\displaystyle B_t = - \nabla \times E \) and Ohm’s law \(E + v \times B = \eta J \). From (A.5) and \(B = (B_1(x,t), B_2(x,t), 0)\), J can be written as \(J=(0,0, j(x,t))\).

By substituting Ampère’s law (A.5) into (A.3), and then using (A.4) and the equality \(\nabla \times ( \nabla \times A ) = \nabla ( \nabla \cdot A ) - \nabla ^2 A\) ( [17]), we have \(B_t = \nabla \times (v \times B ) + \eta \Delta B.\) Using the equality \(\nabla \times (A \times B) = A (\nabla \cdot B) - B ( \nabla \cdot A) + (B \cdot \nabla ) A - (A \cdot \nabla ) B \) ( [17]), we have

$$\begin{aligned} B_t = - ( v \cdot \nabla ) B + ( B \cdot \nabla ) v + \eta \Delta B. \end{aligned}$$
(A.6)

From (A.2) and (A.4), B and v can be written as follows:

$$\begin{aligned} B = \nabla \psi \times {\textbf{e}} = \left( \partial _2 \psi , - \partial _1 \psi , 0 \right) , \qquad v = \nabla \phi \times {\textbf{e}}, \end{aligned}$$

where \({\textbf{e}}=(0,0,1)\). Hence, from (A.6), we obtain

$$\begin{aligned} \nabla \times \left( 0, 0, \psi _t \right) = \nabla \times (0, 0, - \left\{ \phi , \psi \right\} ) + \eta \nabla \times (0,0, \Delta _\perp \psi ), \end{aligned}$$
(A.7)

where \(\Delta _\perp = \partial _{11}^2 + \partial _{22}^2\). In Appendix A1, two symbols \(\Delta \) and \(\Delta _\perp \) are used, but in the text, we use only the symbol \(\Delta \). Because all unknown functions are independent of \(x_3\), from (A.7), we have \( \psi _t + \left\{ \phi , \psi \right\} = \eta \Delta _\perp \psi . \) If we consider the external force of the electric fields, we have

$$\begin{aligned} \psi _t + \left\{ \phi , \psi \right\} = \eta \Delta _\perp (\psi - \psi _*). \end{aligned}$$

Notice that from Faraday’s law \(\displaystyle B_t = - \nabla \times E \) and \(B = \nabla \psi \times {\textbf{e}} \), we have \(\displaystyle E = - \nabla \xi + \psi _t\) for a suitable function \(\xi \). From (A.5) and \(B = \nabla \psi \times {\textbf{e}} \), we have \(J = (0,0,j) = (0,0, - \Delta _\perp \psi )\).

By substituting (A.5) into (A.1) and using the equality \(\nabla \mid B \mid ^2 = 2 (B \cdot \nabla ) B + 2 B \times \left( \nabla \times B \right) \) ([17]), we obtain

$$\begin{aligned} v_t + (v \cdot \nabla )v = - \nabla p - \frac{1}{2} \nabla \mid B \mid ^2 + ( B \cdot \nabla ) B + D \Delta v. \end{aligned}$$
(A.8)

By taking \(\nabla \times \) for (A.8) and using the equality \(\nabla \times \nabla \psi =0\) ( [17]), we have

$$\begin{aligned} \nabla \times \left( v_t + (v \cdot \nabla )v \right) = \nabla \times \left( ( B \cdot \nabla ) B + D \Delta _\perp v \right) . \end{aligned}$$

Let us introduce the vorticity \(\omega = (\nabla \times v) \cdot {\textbf{e}} \). Then, using \(v = \nabla \phi \times {\textbf{e}} \), we have

$$\begin{aligned} \left( 0,0, \omega _t + \left\{ \phi , \omega \right\} \right) = (0,0, \left\{ \psi , j \right\} + D \Delta _\perp \omega ). \end{aligned}$$

Hence we have \( \omega _t + \left\{ \phi , \omega \right\} = \left\{ \psi , j \right\} + D \Delta _\perp \omega . \)

Appendix A2. Numerical algorithm and numerical simulation for (2)

To obtain Fig. 1, we use a numerical scheme that is similar to the methods described in [10] and [31]. We let \(\mu = \eta \), and then, we solve (2) with periodic boundary conditions by the finite differential method. We apply the third-order Karniadakis time integration scheme to the first and second equations of (2), and we apply the successive over-relaxation (SOR) method to the third and fourth equations of (2). The SOR method is well known, so we will discuss only the third-order Karniadakis time integration scheme [19].

When we use the third-order Karniadakis time integration scheme, we use the central difference for the spatial difference \({\partial \phi }/{\partial x_2}\) and \(\Delta \), and Arakawa’s method for the Poisson bracket \(\{ \cdot , \cdot \}\). We set \(L_1 =10\) and \(L_2 = 7\), we use a grid width of \(d x_1= d x_2=h\), and we use \(256 \times 256\) grid points. Let us write the grid number as \(N=256\) and the time step width of the numerical calculation as dt. Furthermore, we write \(t_k = k dt\) for \(k=0, 1, 2, \ldots \). At the grid point (ij) and time step k, we write the unknown function f as \(f_{i,j}^k\). We choose the following as the given function and the initial value:

$$\begin{aligned} \left\{ \begin{array}{ll} \displaystyle \psi _* = F(x_2) \psi ^0(x_2) - 0.00001 \cos \left( 2 \pi x_1 L_1^{-1} - \pi \right) , \\ \displaystyle \psi _0 = \psi _*, \quad \phi _0 = 0, \end{array} \right. \end{aligned}$$
(A.9)

where

$$\begin{aligned} \psi ^0(x_2) = \left( \cosh ^2 \left( 2 \pi x_2 L_1^{-1} - \pi \right) \right) ^{-1}, \\ F(x_2) = -1 + \tanh ^2 \left( 2 \pi x_2 L_2^{-1} \right) + \tanh ^2 \left( 2 \pi - 2 \pi x_2 L_2^{-1} \right) . \end{aligned}$$

Note that \(\psi ^0(x_2)\) and \(\phi ^0 =0\) is a stationary solution for (2) when \(\eta =0, \ \mu =0, \ \psi _* =0\), and \((\psi ^0(x_2), \phi ^0)\) is tearing unstable when \(L_2 / L_1 < \sqrt{5}\) ( [27, 33]). When \(\psi = \psi ^0(x_2)\), then \(B= ( \partial _2 \psi ^0(x_2),0, 0)\), where \(\partial _2 \psi ^0(0)=0\), \(\partial _2 \psi ^0(x_2) <0\) for \(x_2 >0\), and \( \partial _2 \psi ^0(x_2) >0\) for \(x_2 <0\). Hence, magnetic field lines with different directions are adjacent to each other, with a straight line \(x_2=0\) as a boundary. If we take large \(L_1\) and \(L_2\), we can impose periodic boundary conditions because \(\psi ^0(x_2) \rightarrow 0\) and \(d \psi ^0(x_2)/ dx_2 \rightarrow 0\) as \(\mid \, x_2 \mid \rightarrow \infty \) ( [33]). However, \(L_1 =10\), and \(L_2 = 7\) are not so large. Thus, we use the cutoff function \(F(x_2)\), which satisfies \(F(x_2) \approx 0, \ \partial _2 F(x_2) \approx 0\) at \(x_2 = 0, L_2\). In Fig. 1, we take \(\mu \) and \(\eta \) to be small (\(\mu = \eta =0.0002\)).

Arakawa [4] introduced the following discretization of \(\{ g, f \}_{i,j}^k \) at the grid point (ij) and time step k:

$$\begin{aligned} \left\{ \begin{array}{ll} \displaystyle \{ g, f \}_{i,j}^k = - \frac{1}{12 h^2} [ ( f_{i, j-1}^k + f_{i+1,j-1}^k - f_{i,j+1}^k - f_{i+1,j+1}^k) ( g_{i+1,j}^k + g_{i,j}^k )\\ \displaystyle - ( f_{i-1, j-1}^k + f_{i,j-1}^k - f_{i-1,j+1}^k - f_{i,j+1}^k) ( g_{i,j}^k + g_{i-1,j}^k ) \\ \displaystyle + ( f_{i+1, j}^k + f_{i+1,j+1}^k - f_{i-1,j}^k - f_{i-1,j+1}^k) ( g_{i,j+1}^k + g_{i,j}^k ) \\ \displaystyle - ( f_{i+1, j-1}^k + f_{i+1,j}^k - f_{i-1,j-1}^k - f_{i-1,j}^k) ( g_{i,j}^k + g_{i,j-1}^k ) \\ \displaystyle + ( f_{i+1,j}^k - f_{i,j+1}^k ) ( g_{i+1,j+1}^k + g_{i,j}^k ) - ( f_{i,j-1}^k - f_{i-1,j}^k ) ( g_{i,j}^k + g_{i-1,j-1}^k ) \\ \displaystyle + ( f_{i,j+1}^k - f_{i-1,j}^k ) ( g_{i-1,j+1}^k + g_{i,j}^k ) - ( f_{i+1,j}^k - f_{i,j-1}^k ) ( g_{i,j}^k + g_{i+1,j-1}^k ) ]. \end{array} \right. \end{aligned}$$
(A.10)

This discretization of the convection term exactly conserves energy, enstrophy, and circulation. Arakawa’s method is compared with the spectral method in [30]. It is important to note that in [21], the left-hand side of (A.10) is written as \(\{ f, g \}_{i,j}^k\), but that was an error.

Let us denote the discretization of the right-hand sides of the first and second equations of (2) at the grid point (ij) and time step k as \(F_{i,j}^k\) and \(G_{i,j}^k\), as follows:

$$\begin{aligned}{} & {} F_{i,j}^k = - \left\{ \phi , \omega \right\} _{i,j}^k + \left\{ \psi , j \right\} _{i,j}^k \\{} & {} \qquad + D h^{-2} \left( ( \omega _{i-1,j}^k - 2 \omega _{i,j}^k + \omega _{i+1,j}^k ) + ( \omega _{i,j-1}^k - 2 \omega _{i,j}^k + \omega _{i,j+1}^k ) \right) , \\{} & {} G_{i,j}^k = - \left\{ \phi , \psi \right\} _{i,j}^k \\{} & {} \qquad + \eta h^{-2} \left( ( \psi _{i-1,j}^k - 2 \psi _{i,j}^k + \psi _{i+1,j}^k ) + ( \psi _{i,j-1}^k - 2 \psi _{i,j}^k + \psi _{i,j+1}^k ) \right) \\{} & {} \qquad - \eta h^{-2} \left( ( \psi _{* i-1,j}^k - 2 \psi _{* i,j}^k + \psi _{* i+1,j}^k ) + ( \psi _{* i,j-1}^k - 2 \psi _{* i,j}^k + \psi _{* i,j+1}^k ) \right) . \end{aligned}$$

We apply the third-order Karniadakis time-integration scheme [19] to the first and second equations of (2):

$$\begin{aligned}{} & {} \omega _{i,j}^{k+1} = \frac{6}{11} \left( 3 \omega _{i,j}^{k} - \frac{3}{2} \omega _{i,j}^{k-1} + \frac{1}{3} \omega _{i,j}^{k-2} + dt \left( 3 F_{i,j}^{k} - 3 F_{i,j}^{k-1} + F_{i,j}^{k-2} \right) \right) , \\{} & {} \psi _{i,j}^{k+1} = \frac{6}{11} \left( 3 \psi _{i,j}^{k} - \frac{3}{2} \psi _{i,j}^{k-1} + \frac{1}{3} \psi _{i,j}^{k-2} + dt \left( 3 G_{i,j}^{k} - 3 G_{i,j}^{k-1} + G_{i,j}^{k-2} \right) \right) . \end{aligned}$$

When we solve the first and second equations of (2) using the third-order Karniadakis time-integration scheme, we define dt the same way that [21] defined it (see, [18]).

As shown in Fig. 1(b), a shape similar to the letter “x” is created around \((x_1, x_2) =(5, 3.5)\) because of tearing instability. Note that a periodic boundary condition is imposed, and we can confirm that an island shape is formed around \((x_1, x_2) =(0, 3.5)\) in Fig. 1(b).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondo, S., Sawamura, T. Existence of a strong solution for the 2D four-field RMHD equations. Annali di Matematica 203, 447–473 (2024). https://doi.org/10.1007/s10231-023-01370-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10231-023-01370-7

Keywords

Mathematics Subject Classification

Navigation