Skip to main content
Log in

Vaisman manifolds and transversally Kähler–Einstein metrics

  • Published:
Annali di Matematica Pura ed Applicata (1923 -) Aims and scope Submit manuscript

Abstract

We use the transverse Kähler–Ricci flow on the canonical foliation of a closed Vaisman manifold to deform the Vaisman metric into another Vaisman metric with a transverse Kähler–Einstein structure. We also study the main features of such a manifold. Among other results, using techniques from the theory of parabolic equations, we obtain a direct proof for the short-time existence of the solution for transverse Kähler–Ricci flow on Vaisman manifolds, recovering in a particular setting a result of Bedulli et al. (J Geom Anal 28:697–725, 2018), but without employing the Molino structure theorem. Moreover, we investigate Einstein–Weyl structures in the setting of Vaisman manifolds and find their relationship with quasi-Einstein metrics. Some examples are also provided to illustrate the main results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alekseevsky, D., Hasegawa, K., Kamishima, Y.: Homogeneous Sasaki and Vaisman manifolds of unimodular Lie groups. Nagoya Math. J. 243, 83–96 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bazzoni, G., Marrero, J.C., Oprea, J.: A splitting theorem for compact Vaisman manifolds. Rend. Semin. Mat. Univ. Politec. Torino 74(1), 21–29 (2016)

    MathSciNet  MATH  Google Scholar 

  3. Bedulli, L., He, W., Vezzoni, L.: Second-order geometric flows on foliated manifolds. J. Geom. Anal. 28, 697–725 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Belgun, F.: On the metric structure of the non-Kähler complex surfaces. Math. Ann. 317, 1–40 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Besse, A.: Einstein Manifolds, vol. 10. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  6. Boyer, C., Galicki, K.: Sasakian Geometry. Oxford University Press, Oxford (2008)

    MATH  Google Scholar 

  7. Boyer, C., Galicki, K., Matzeu, P.: On Eta-Einstein Sasakian geometry. Commun. Math. Phys. 262, 177–208 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brozos-Vázquez, M., García-Río, E., Gilkey, P., Valle-Regueiro, X.: Half conformally flat generalized quasi-Einstein manifolds of metric signature \((2,2)\). Int. J. Math. 29(1), 1850002 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cappelletti-Montano, B., De Nicola, A., Marrero, J.C., Yudin, I.: Hard Lefschetz theorem for Vaisman manifolds. Trans. Am. Math. Soc. 371(2), 755–776 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cappelletti-Montano, B., De Nicola, A., Marrero, J.C., Yudin, I.: Almost formality of quasi-Sasakian and Vaisman manifolds with applications to nilmanifolds. Israel J. Math. 241(1), 37–87 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  11. Catino, G.: Generalized quasi-Einstein manifolds with harmonic Weyl tensor. Math. Z. 271, 751–756 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, B.Y., Piccinni, P.: The canonical foliations of a locally conformal Kähler manifold. Ann. Mat. Pura Appl. 141, 289–305 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, B.Y.: Classification of torqued vector fields and its applications to Ricci solitons. Kragujev. J. Math. 41(2), 239–250 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. De, U.C., Shenawy, S.: Generalized quasi-Einstein GRW space-times. Int. J. Geom. Methods Mod. Phys. 16(8), 1950124 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Deng, Y.H.: A note on generalized quasi-Einstein manifolds. Math. Nachr. 288(10), 1122–1126 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dragomir, S.: On the normal bundle of a complex submanifold of a locally conformal Kaehler manifold. J. Geom. 55, 57–72 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dragomir, S.: Generalized Hopf manifolds, locally conformal Kaehler structures and real hypersurfaces. Kodai Math. J. 14(3), 366–391 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dragomir, S., Ornea, L.: Locally Conformal Kähler Geometry. Programs in Mathematics, vol. 155. Birkhäuser, Boston (1998)

  19. El Kacimi-Alaoui, A.: Opérateurs transversalement elliptiques sur un feuilletage Riemannien et applications. Compos. Math. 79, 57–106 (1990)

    MATH  Google Scholar 

  20. Freitas, F., Antonio, A., Tenenblat, K.: On generalized quasi-Einstein manifolds. J. Geom. Phys. 178, Paper No. 104562, 10 pp (2022)

  21. Gauduchon, P.: Structures de Weyl-Einstein, éspaces de twisteurs et variétés de type \(S^1\times S^3\). J. Reine Angew. Math. 469, 1–50 (1995)

    MathSciNet  MATH  Google Scholar 

  22. Gauduchon, P., Moroianu, A., Ornea, L.: Compact homogeneous LCK manifolds are Vaisman. Math. Ann. 361(3–4), 1043–1048 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gill, M., Smith, D.J.: The behavior of Chern scalar curvature under Chern-Ricci flow. Proc. Am. Math. Soc. 143(11), 4875–4883 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Godlinski, M., Kopczynski, W., Nurowski, P.: Locally Sasakian manifolds. Class. Quantum Grav. 17, 105–115 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Goldberg, S., Vaisman, I.: On compact locally conformal Kaehler manifolds with non-negative sectional curvature. Ann. Fac. Sci. Toulouse 2, 117–123 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  26. Higa, T.: Weyl manifolds and Einstein-Weyl manifolds. Comment. Math. Univ. St. Paul. 42(2), 143–160 (1993)

    MathSciNet  MATH  Google Scholar 

  27. Hu, Z., Li, D., Zhai, S.: On generalized \(m\)-quasi-Einstein manifolds with constant Ricci curvatures. J. Math. Anal. Appl. 446(1), 843–851 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ianus, S., Matsumoto, K., Ornea, L.: Complex hypersurfaces of a generalized Hopf manifold. Publ. Inst. Math. (Beograd) (N.S.) 42(56), 123–129 (1987)

  29. Inoguchi, J.-I., Lee, J.-E.: J-trajectories in Vaisman manifolds. Differ. Geom. Appl. 82, Paper No. 101882 (2022)

  30. Krylov, N. V.: Lectures on Elliptic and Parabolic Equations in Hölder Spaces. Graduate Studies in Mathematics, vol. 12. American Mathematical Society, xii+164 pp (1996)

  31. Madani, F., Moroianu, A., Pilca, M.: LcK structures with holomorphic Lee vector field on Vaisman-type manifolds. Geom. Dedicata 213, 251–266 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  32. Molino, P.: Riemannian Foliations. Progress in Mathematics, vol. 73. Birkhauser Verlag Inc., Boston (1988)

  33. Ornea, L., Slesar, V.: Deformation of Vaisman manifolds. Differ. Geom. Appl. 85, 101940 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ornea, L., Verbitsky, M.: Einstein-Weyl structures on complex manifolds and conformal version of Monge-Ampère equation. Bull. Math. Soc. Sci. Math. Roumanie 51(99)(4), 339–353 (2008)

  35. Ornea, L., Verbitsky, M.: Structure theorem for compact Vaisman manifolds. Math. Res. Lett. 10, 799–805 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ornea, L., Verbitsky, M.: An immersion theorem for Vaisman manifolds. Math. Ann. 332, 121–143 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ornea, L., Verbitsky, M.: Closed orbits of Reeb fields on Sasakian manifolds and elliptic curves on Vaisman manifolds. Math. Z. 299(3–4), 2287–2296 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ornea, L., Verbitsky, M.: Lee classes on LCK manifolds with potential, Tohoku Math. J. (2022), in press. arXiv:2112.03363

  39. Pilca, M.: Toric Vaisman manifolds. J. Geom. Phys. 107, 149–161 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Reinhart, B.: Foliated manifolds with bundle-like metrics. Ann. Math. 69, 119–132 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  41. Slesar, V., Visinescu, M., Vîlcu, G.-E.: Transverse Kähler-Ricci flow and deformation of the metric on the Sasaki space \(T^{1,1}\). Rom. Rep. Phys. 72, 108 (2020)

    Google Scholar 

  42. Smoczyk, K., Wang, G., Zhang, Y.: The Sasaki-Ricci flow. Intern. J. Math. 21, 951–969 (2010)

    Article  Google Scholar 

  43. Tanno, S.: The topology of contact Riemannian manifolds. Illinois J. Math. 12, 700–717 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  44. Tosatti, V.: KAWA lecture notes on the Kähler–Ricci flow. Ann. Fac. Sci. Toulouse: Mathématiques, Série 6, Tome 27(2), 285–376 (2018)

  45. Tosatti, V., Weinkove, B.: The Chern-Ricci flow on complex surfaces. Compos. Math. 149(12), 2101–2138 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  46. Tondeur, Ph.: Geometry of Foliations. Birkhäuser, Basel (1997)

    Book  MATH  Google Scholar 

  47. Tsukada, K.: The canonical foliation of a compact generalized Hopf manifold. Differ. Geom. Appl. 11, 13–28 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  48. Vaisman, I.: Locally conformal Kähler manifolds with parallel Lee form. Rend. Mat. 6(12)(2), 263–284 (1979)

  49. Vaisman, I.: Generalized Hopf manifolds. Geom. Dedic. 13, 231–255 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  50. Wang, G., Zhang, Y.: The Sasaki-Ricci flow on Sasakian 3-spheres. Commun. Math. Stat. 1, 43–71 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  51. Weinkove, B.: The Kähler–Ricci flow on compact Kähler manifolds. In: Geometric Analysis, IAS/Park City Mathematics Series, vol. 22, pp. 53–108. American Mathematical Society (2016)

Download references

Acknowledgements

The authors would like to thank Professor Luigi Vezzoni for bringing the article [3] to their attention and for useful comments on the first draft of this paper. They are also extremely grateful to Professor Liviu Ornea for the useful suggestions and remarks that led to the improvement of the article. The authors thank the referee for very carefully reading a first version of the paper and for the most useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Slesar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Partially supported by Romanian Ministry of Education and Research, Program PN-III, Project number PN-III-P4-ID-PCE-2020-0025, Contract 30/04.02.2021.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slesar, V., Vîlcu, GE. Vaisman manifolds and transversally Kähler–Einstein metrics. Annali di Matematica 202, 1855–1876 (2023). https://doi.org/10.1007/s10231-023-01304-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10231-023-01304-3

Keywords

Mathematics Subject Classification

Navigation