Skip to main content
Log in

Maximality of Laplacian algebras, with applications to Invariant Theory

  • Published:
Annali di Matematica Pura ed Applicata (1923 -) Aims and scope Submit manuscript

Abstract

We show Laplacian algebras are maximal, and give applications to the Classical Invariant Theory of real orthogonal representations of compact groups, including: The solution of the Inverse Invariant Theory problem for finite groups. An if-and-only-if criterion for when a separating set is a generating set. And the introduction of a class of generalized polarizations which, in a certain class of representations (including all representations of finite groups), always generates the algebra of invariants of their diagonal representations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Derksen, H. and Kemper, G.: Computational invariant theory, volume 130 of Encyclopaedia of Mathematical Sciences. Springer, Heidelberg, enlarged edition, 2015. With two appendices by Vladimir L. Popov, and an addendum by Norbert A’Campo and Popov, Invariant Theory and Algebraic Transformation Groups, VIII

  2. Draisma, J., Kemper, G., Wehlau, D.: Polarization of separating invariants. Canad. J. Math. 60(3), 556–571 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ferus, D., Karcher, H., Münzner, Hans Friedrich: Cliffordalgebren und neue isoparametrische Hyperflächen. Math. Z. 177(4), 479–502 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gorodski, C., Radeschi, Marco: On homogeneous composed Clifford foliations. Münster J. Math. 9(1), 35–50 (2016)

    MathSciNet  MATH  Google Scholar 

  5. Helgason, S.: Groups and geometric analysis, volume 83 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2000. Integral geometry, invariant differential operators, and spherical functions, Corrected reprint of the 1984 original

  6. Howe, R., Tan, Eng-Chye.: Nonabelian harmonic analysis. Universitext. Springer-Verlag, New York, 1992. Applications of \({{\rm {S}}L}(2,{{\bf {R}}})\)

  7. Hunziker, M.: Classical invariant theory for finite reflection groups. Transform. Groups 2(2), 147–163 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Iltyakov, A.V.: Laplace operator and polynomial invariants. J. Algebra 207(1), 256–271 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kapovitch, V. and Lytchak, A.: Structure of Submetries. arXiv e-prints, page arXiv:2007.01325, July (2020)

  10. Kraft, H. and Procesi, C.: Classical Invariant Theory: A Primer. 1996. Lecture notes available on https://kraftadmin.wixsite.com/hpkraft

  11. Lytchak, A., Radeschi, Marco: Algebraic nature of singular Riemannian foliations in spheres. J. Reine Angew. Math. 744, 265–273 (2018)

    MathSciNet  MATH  Google Scholar 

  12. Mendes, R.A.E., Radeschi, M.: Singular Riemannian foliations and their quadratic basic polynomials. Transform. Groups 25(1), 251–277 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mendes, Ricardo A. E., Radeschi, Marco: Laplacian algebras, manifold submetries and the inverse invariant theory problem. Geom. Funct. Anal. 30(2), 536–573 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hans Friedrich Münzner: Isoparametrische Hyperflächen in Sphären. Math. Ann. 251(1), 57–71 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hans Friedrich Münzner: Isoparametrische Hyperflächen in Sphären II Über die Zerlegung der Sphäre in Ballbündel. Math. Ann. 256(2), 215–232 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  16. Neusel, M. D., Smith, L.: Invariant theory of finite groups. Mathematical Surveys and Monographs, vol. 94. American Mathematical Society, Providence, RI (2002)

  17. Ozeki, H., Takeuchi, Masaru: On some types of isoparametric hypersurfaces in spheres. I. Tohoku Math. J. (2) 27(4), 515–559 (1975)

    MathSciNet  MATH  Google Scholar 

  18. Ozeki, H., Takeuchi, M.: On some types of isoparametric hypersurfaces in spheres II. Tohoku Math. J. 28(1), 7–55 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  19. Radeschi, Marco: Clifford algebras and new singular Riemannian foliations in spheres. Geom. Funct. Anal. 24(5), 1660–1682 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rudin, W.: Principles of mathematical analysis. McGraw-Hill Book Co., New York-Auckland-Düsseldorf, third edition, 1976. International Series in Pure and Applied Mathematics

  21. Gerald, W.: Schwarz. When polarizations generate. Transform. Groups 12(4), 761–767 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Schrijver, Alexander: Tensor subalgebras and first fundamental theorems in invariant theory. J. Algebra 319(3), 1305–1319 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Swartz, E.: Matroids and quotients of spheres. Math. Z. 241(2), 247–269 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wallach, Nolan R.: Invariant differential operators on a reductive Lie algebra and Weyl group representations. J. Amer. Math. Soc. 6(4), 779–816 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hermann Weyl. The classical groups. Princeton Landmarks in Mathematics. Princeton University Press, Princeton, NJ: Their invariants and representations. Fifteenth printing, Princeton Paperbacks (1997)

    Google Scholar 

Download references

Acknowledgements

It is a pleasure to thank Harm Derksen for pointing out [22], which was the main inspiration for the proof of Theorem A, and Matyas Domokos for a simplification of the proof of Corollary E using [2]. We would also like to thank Alexander Lytchak and Matyas Domokos for suggestions that improved the exposition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Radeschi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first-named author has been supported by the NSF grant DMS-2005373, and the second-named author by NSF 1810913.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendes, R.A.E., Radeschi, M. Maximality of Laplacian algebras, with applications to Invariant Theory. Annali di Matematica 202, 1011–1031 (2023). https://doi.org/10.1007/s10231-022-01269-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10231-022-01269-9

Keywords

Mathematics Subject Classification

Navigation