Skip to main content
Log in

Mean curvature flow of graphs in generalized Robertson–Walker spacetimes with perpendicular Neumann boundary condition

  • Published:
Annali di Matematica Pura ed Applicata (1923 -) Aims and scope Submit manuscript

Abstract

We prove the longtime existence for the mean curvature flow problem with a perpendicular Neumann boundary condition in a generalized Robertson–Walker (GRW) spacetime that obeys the null convergence condition. In addition, we prove that the metric of such a solution is conformal to the one of the leaf of the GRW in asymptotic time. Furthermore, if the initial hypersurface is mean convex, then the evolving hypersurfaces remain mean convex during the flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alías, L., Mastrolia, P., Rigoli, M.: Maximum Principles and Geometric Applications. Springer Monographs in Mathematics. Springer, Cham (2016)

    Book  MATH  Google Scholar 

  2. Alías, L., Romero, A., Sánchez, M.: Uniqueness of complete spacelike hypersurfaces of constant mean curvature in Generalized Robertson Walker spacetimes. Tôhoku Math. J. 27, 71–84 (1995)

    MathSciNet  MATH  Google Scholar 

  3. Alías, L., Romero, A., Sánchez, M.: Spacelike hypersurfaces of constant mean curvature and Calabi–Berstein type problems. Tôhoku Math. J. 30, 655–661 (1997)

    MATH  Google Scholar 

  4. Bellettini, G.: Lecture notes on mean curvature flow: Barriers and singular perturbations. Bull (New Ser) Am. Math. Soc. 54, 529–532 (2016)

    Article  Google Scholar 

  5. Barros, A., Brasil, A., Caminha, A.: Stability of spacelike hypersurfaces in foliated spacetimes. Differ. Geom. Appl. 26, 357–365 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chow, B., Knopf, D.: The Ricci flow: an introduction. Mathematical Surveys and Monographs, American Mathematical Society, vol. 110 (2004)

  7. Ecker, K.: On the mean curvature flow of spacelike hypersurfaces in asymptotically flat spacetimes. J. Aust. Math. Soc. 55, 41–59 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ecker, K.: Interior estimates and longtime solutions for mean curvature flow of noncompact spacelike hypersurfaces in Minkowski space. J. Differ. Geom. 45, 481–498 (1997)

    MathSciNet  MATH  Google Scholar 

  9. Ecker, K., Huisken, G.: Parabolic methods for the construction of spacelike slices of prescribed mean curvature in cosmological spacetimes. Commun. Math. Phys. 135, 595–613 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  11. Han, Q.: Flow by Mean Curvature of Convex Surfaces into Spheres A Basic Course in Partial Differential Equations. American Mathematical Society, Providence (2011)

    Google Scholar 

  12. Huisken, G.: Flow by mean curvature of convex surfaces into spheres. J. Differ. Geom. 20, 237–266 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lambert, B.: The perpendicular Neumann problem for mean curvature flow with a time like cone boundary condition. Trans. Am. Math. Soc. 7, 3373–3388 (2014)

    Article  MATH  Google Scholar 

  14. Lieberman, G.: Second Order Parabolic Differential Equations. World Scientific Publishing, River Edge, NJ (1996)

    Book  MATH  Google Scholar 

  15. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. W. H. Freeman and Co., New York (1973)

    Google Scholar 

  16. Montiel, S.: Uniqueness of spacelike hypersurfaces of constant mean curvature in oliated spacetimes. Proc. Am. Math. Soc. 3, 529–533 (1999)

    MATH  Google Scholar 

  17. O’Neill, B.: Semi-Riemannian Geometry with Applications to Relativity. Academic Press, London (1983)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernanda Roing.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

6 Appendix: A Simons’ type identity

6 Appendix: A Simons’ type identity

proof of Proposition 4.10

Let \({\overline{R}}\) and R be the Riemann tensors of N and \(\Sigma _t\) defined by:

$$\begin{aligned} {\overline{R}}(X, Y)Z=\overline{\nabla }_X\overline{\nabla }_YZ-\overline{\nabla }_Y\overline{\nabla }_XZ-\overline{\nabla }_{[X, Y]}Z, \end{aligned}$$

for all \(X, Y, Z\in TN\) and

$$\begin{aligned} R(U, V)W=\nabla _U\nabla _VW-\nabla _V\nabla _UW-\nabla _{[U, V]}W, \end{aligned}$$

for all \(U, V, W\in T\Sigma _t\).

Set the coordinate vector fields \(\{\partial _i\}_{i=1}^{n+1}\) in N. In what follows we use Codazzi’s equation

$$\begin{aligned} \nabla _i a_{jk} -\nabla _j a_{ik}&= \partial _i \langle {{\bar{\nabla }}}_{\partial _j} \nu , \partial _k\rangle - \partial _j \langle {{\bar{\nabla }}}_{\partial _i}\nu , \partial _k\rangle - \langle A(\nabla _{\partial _i}\partial _j), \partial _k\rangle - \langle A\partial _j, \nabla _{\partial _i}\partial _k\rangle \nonumber \\&\,\,\,\,\,\,\,\,+ \langle A(\nabla _{\partial _j}\partial _i), \partial _k\rangle +\langle A\partial _i, \nabla _{\partial _j}\partial _k\rangle =- L_{ijk},. \end{aligned}$$
(61)

being L the (0, 3)-tensor in the hypersurface \(\Sigma _t\) given by

$$\begin{aligned} L_{ijk}=\langle {\bar{R}}(\partial _i,\partial _j)\nu , \partial _k\rangle . \end{aligned}$$
(62)

We also need the (Riemannian) Ricci commutation formula

$$\begin{aligned}&\nabla _i \nabla _k a_{j\ell }-\nabla _k\nabla _i a_{j\ell }= -R^s_{ikj} a_{s\ell }-R^s_{ik\ell } a_{js}. \end{aligned}$$
(63)

Using (61) and (63) one obtains

$$\begin{aligned} \nabla _k \nabla _\ell a_{ij}&= \nabla _k \nabla _i a_{\ell j} -\nabla _k L_{\ell ij}\\&= \nabla _i \nabla _k a_{\ell j} - R^s_{ki\ell } a_{sj}- R^s_{kij} a_{\ell s} -\nabla _k L_{\ell ij}\\&= \nabla _i \nabla _j a_{k\ell } -\nabla _i L_{k\ell j}-\nabla _k L_{\ell ij}- R^s_{ki\ell } a_{sj}-R^s_{kij} a_{\ell s}. \end{aligned}$$

Now we should take in account the Gauss equation

$$\begin{aligned} R^s_{ik\ell } = {\bar{R}}_{ik\ell }^s +a_{k\ell } a_i^s - a_{i\ell } a^s_k. \end{aligned}$$

Therefore

$$\begin{aligned} \nabla _k \nabla _\ell a_{ij}&= \nabla _i \nabla _j a_{k\ell } -\nabla _i L_{k\ell j}-\nabla _k L_{\ell ij}\\&\quad - ({\bar{R}}^s_{ki\ell }+a_{i\ell } a^s_k - a_{k\ell } a^s_i) a_{sj}- ({\bar{R}}^s_{kij} +a_{ij}a^s_k -a_{jk}a^s_i) a_{\ell s}. \end{aligned}$$

Taking traces we have

$$\begin{aligned} \Delta a_{ij}&= \nabla _i \nabla _j H -g^{k\ell }(\nabla _i L_{k\ell j}+\nabla _k L_{\ell ij}) - g^{k\ell }({\bar{R}}^s_{ki\ell }a_{sj}+{\bar{R}}^s_{kij}a_{\ell s})\\&\quad - a^k_{i} a^s_k a_{sj}+H a^s_i a_{sj}- a_{ij}|A|^2 +a^\ell _{j}a^s_i a_{\ell s}. \end{aligned}$$

However

$$\begin{aligned} a^\ell _{j}a^s_i a_{\ell s}=a^s_{j}a^\ell _i a_{s \ell }=a^s_{j}a^k_i a_{s k}= a^k_i a_{sj} a^s_{k}. \end{aligned}$$

This implies the following general formula

$$\begin{aligned} \Delta a_{ij}&= \nabla _i \nabla _j H +H a^s_i a_{sj}- a_{ij}|A|^2\\&-g^{k\ell }(\nabla _i L_{k\ell j}+\nabla _k L_{\ell ij}) - g^{k\ell }({\bar{R}}^s_{ki\ell }a_{sj}+{\bar{R}}^s_{kij}a_{\ell s}). \end{aligned}$$

Hence,

$$\begin{aligned} \frac{1}{2} \Delta |A|^2 -|\nabla A|^2= & {} a^{ij}\Delta a_{ij}\\= & {} a^{ij}\nabla _i \nabla _j H +H {\text {tr}} A^3- |A|^4 -g^{k\ell }(\nabla _i L_{k\ell j}+\nabla _k L_{\ell ij}) a^{ij} \\&-g^{k\ell }({\bar{R}}^s_{ki\ell }a_{sj}a^{ij}+{\bar{R}}^s_{kij}a_{\ell s} a^{ij}). \end{aligned}$$

On the other hand

$$\begin{aligned} \partial _t a_{ij}&= \langle {{\bar{\nabla }}}_{\partial _t} {{\bar{\nabla }}}_{\partial _i} \nu , \partial _j\rangle + \langle {{\bar{\nabla }}}_{\partial _i} \nu , {{\bar{\nabla }}}_{\partial _j} \partial _t\rangle \\&= \langle {{\bar{\nabla }}}_{\partial _i} {{\bar{\nabla }}}_{\partial _t} \nu , \partial _j\rangle + \langle {\bar{R}}(\partial _t, \partial _i)\nu , \partial _j\rangle + \langle {{\bar{\nabla }}}_{\partial _i} \nu , {{\bar{\nabla }}}_{\partial _j} \partial _t\rangle \\&= \langle \nabla _{\partial _i} \nabla H, \partial _j\rangle - H\langle {\bar{R}}(\partial _i,\nu )\nu , \partial _j\rangle + \langle {{\bar{\nabla }}}_{\partial _i} \nu , {{\bar{\nabla }}}_{\partial _j} (H\nu )\rangle \\&= \langle \nabla _{\partial _i} \nabla H, \partial _j\rangle - H\langle {\bar{R}}(\partial _i,\nu )\nu , \partial _j\rangle + H a_{i}^k a_{jk}. \end{aligned}$$

Therefore

$$\begin{aligned} \frac{1}{2}\partial _t |A|^2 = a^{ij}\langle \nabla _{\partial _i} \nabla H, \partial _j\rangle - Ha^{ij}\langle \bar{R}(\partial _i,\nu )\nu , \partial _j\rangle + H a_{i}^k a_{jk} a^{ij}. \end{aligned}$$

We conclude that

$$\begin{aligned} \frac{1}{2} Q |A|^2 +|\nabla A|^2&= |A|^4+g^{k\ell }(\nabla _i L_{k\ell j}+\nabla _k L_{\ell ij}) a^{ij} + g^{k\ell }({\bar{R}}^s_{ki\ell }a_{sj}a^{ij}+{\bar{R}}^s_{kij}a_{\ell s} a^{ij})\\&\quad -H\langle {\overline{R}}(\partial _ i, \nu )\nu , \partial _ j\rangle . \end{aligned}$$

Therefore

$$\begin{aligned} \frac{1}{2} Q|A|^2 +|\nabla A|^2= & {} |A|^4+T_{ij} a^{ij} + g^{k\ell }({\bar{R}}^s_{ki\ell }a_{sj}a^{ij}+{\bar{R}}^s_{kij}a_{\ell s} a^{ij}) -H\langle {\overline{R}}(\partial _ i, \nu )\nu , \partial _ j\rangle , \end{aligned}$$

where \(T_{ij}=g^{k\ell }(\nabla _i L_{k\ell j}+\nabla _k L_{\ell ij}) a^{ij}.\) \(\square\)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Lira, J.H.S., Roing, F. Mean curvature flow of graphs in generalized Robertson–Walker spacetimes with perpendicular Neumann boundary condition. Annali di Matematica 202, 939–966 (2023). https://doi.org/10.1007/s10231-022-01266-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10231-022-01266-y

Keywords

Mathematics Subject Classification

Navigation