Skip to main content
Log in

Boundary regularity of mixed local-nonlocal operators and its application

  • Published:
Annali di Matematica Pura ed Applicata (1923 -) Aims and scope Submit manuscript

Abstract

Let \(\Omega\) be a bounded \(C^2\) domain in \({\mathbb {R}^{n}}\) and \(u\in C({\mathbb {R}^{n}})\) solves

$$\begin{aligned} \begin{aligned} \Delta u + a Iu + C_0|Du| \ge -K\quad \text {in}\; \Omega , \quad \Delta u + a Iu - C_0|Du|\le K \quad \text {in}\; \Omega , \quad u=0\quad \text {in}\; \Omega ^c, \end{aligned} \end{aligned}$$

in the viscosity sense, where \(0\le a\le A_0\), \(C_0, K\ge 0\), and I is a suitable nonlocal operator. We show that \(u/\delta\) is in \(C^{\upkappa }(\bar{\Omega })\) for some \(\upkappa \in (0,1)\), where \(\delta (x)=\mathop {\mathrm {dist}}\limits (x, \Omega ^c)\). Using this result, we also establish that \(u\in C^{1, \gamma }(\bar{\Omega })\). Finally, we apply these results to study an overdetermined problem for mixed local-nonlocal operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arora, R., Rădulescu, V.D.: Combined effects in mixed local-nonlocal stationary problems. (2022) Preprint, arXiv: 2111.06701

  2. Barles, G., Chasseigne, E., Imbert, C.: On the Dirichlet problem for second-order elliptic integro-differential equations. Indiana Univ. Math. J. 57(1), 213–246 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barles, G., Imbert, C.: Second-order elliptic integro-differential equations: viscosity solutions’ theory revisited. Ann. Inst. H. Poincaré Anal. Non Linéaire 25, 567–585 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Biagi, S., Dipierro, S., Valdinoci E., Vecchi, E.: A Faber-Krahn inequality for mixed local and nonlocal operators. (2021) Preprint, arXiv:2104.00830

  5. Biagi, S., Dipierro, S., Valdinoci, E., Vecchi, E.: Mixed local and nonlocal elliptic operators: regularity and maximum principles. Comm. Partial Differ. Equ. 47(3), 585–629 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  6. Biagi, S., Vecchi, E., Dipierro, S., Valdinoci, E.: Semilinear elliptic equations involving mixed local and nonlocal operators, Proc. R. Soc. Edinb. Sect. A Math.https://doi.org/10.1017/prm.2020.75

  7. Biswas, A.: Principal eigenvalues of a class of nonlinear integro-differential operators. J. Differ. Equ. 268(9), 5257–5282 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. Biswas, A., Jarohs, S.: On overdetermined problems for a general class of nonlocal operators. J. Differ. Equ. 268(5), 2368–2393 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. Biswas, A., Lőrinczi, J.: Hopf’s Lemma for viscosity solutions to a class of non-local equations with applications. Nonlinear Anal. 204, 112194 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  10. Biswas, A., Modasiya, M.: Mixed local-nonlocal operators: maximum principles, eigenvalue problems and their applications, (2021) preprint, arXiv: 2110.06746

  11. Caffarelli, L., Crandall, M.G., Kocan, M., Święch, A.: On viscosity solutions of fully nonlinear equations with measurable ingredients. Comm. Pure Appl. Math. 49(4), 365–397 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Caffarelli, L.A., Silvestre, L.: Regularity theory for fully nonlinear integro-differential equations. Comm. Pure Appl. Math. 62, 597–638 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Caffarelli, L.A., Silvestre, L.: Regularity results for nonlocal equations by approximation. Arch. Ration. Mech. Anal. 200(1), 59–88 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cianchi, A., Salani, P.: Overdetermined anisotropic elliptic problems. Math. Ann. 345(4), 859–881 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Clément, P., Peletier, L.A.: An anti-maximum principle for second-order elliptic operators. J. Differ. Equ. 34(2), 218–229 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  16. Delfour, MC., Zolésio, J.P.: Shapes and geometries. Metrics, analysis, differential calculus, and optimization. Second edition. Advances in Design and Control, vol. 22, pp. xxiv+622. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2011)

  17. De Filippis, C., Mingione, G.: Gradient regularity in mixed local and nonlocal problems (2022) Preprint Arxiv:2204.06590

  18. Fall, M.M., Jarohs, S.: Gradient estimates in fractional Dirichlet problems. Potential Anal. 54(4), 627–636 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fall, M.M., Jarohs, S.: Overdetermined problems with fractional Laplacian. ESAIM Control Optim. Calc. Var. 21(4), 924–938 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fall, M.M., Milend, I.A., Weth, T.: Unbounded periodic solutions to Serrin’s overdetermined boundary value problem. Arch. Ration. Mech. Anal. 223(2), 737–759 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fang, Y., Shang, B., Zhang, C.: Regularity Theory for Mixed Local and Nonlocal Parabolic p-Laplace Equations. J. Geom. Anal. 32, 22 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  22. Farina, A., Kawohl, B.: Remarks on an overdetermined boundary value problem. Calc. Var. Partial Differ. Equ. 31(3), 351–357 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Farina, A., Valdinoci, E.: Flattening results for elliptic PDEs in unbounded domains with applications to overdetermined problems. Arch. Rational Mech. Anal. 195(3), 1025–1058 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Foondun, M.: Harmonic functions for a class of integro-differential operators. Potential Anal. 31(1), 21–44 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Garroni, M.G., Menaldi, J.L.: Second order elliptic integro-differential problems, Chapman and Hall/CRC Research Notes in Mathematics, vol. 430. pp. xvi+221, Chapman and Hall/CRC, Boca Raton, FL (2002)

  26. Garain, P., Kinnunen, J.: On the regularity theory for mixed local and nonlocal quasilinear elliptic equations, to appear in Transactions of the AMS, (2022)

  27. Garain, P., Lindgren, E.: Higher Hölder regularity for mixed local and nonlocal degenerate elliptic equations. (2022) Preprint Arxiv: 2204.13196

  28. Kazdan, JL.: Prescribing The Curvature Of A Riemannian Manifold, CBMS Reg. Conference Series Mathematics, vol. 57, American Mathematical Society, Providence (1985)

  29. Kim, M., Kim, P., Lee, J., Lee, K.-A.: Boundary regularity for nonlocal operators with kernel of variable orders. J. Funct. Anal. 277(1), 279–332 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  30. Krylov, N.: Boundedly inhomogeneous elliptic and parabolic equations in a domain. Izv. Akad. Nauk SSSR Ser. Mat. 47, 75–108 (1983)

    MathSciNet  Google Scholar 

  31. Iannizzotto, A., Mosconi, S., Squassina, M.: Fine boundary regularity for the degenerate fractional p-Laplacian. J. Funct. Anal. 279(8), 108659 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mou, C.: Existence of \(C^\alpha\) solutions to integro-PDEs. Calc. Var. Partial Diff. Equ. 58(4), 1–28 (2019)

    Article  MathSciNet  Google Scholar 

  33. Mou, C., Zhang, Y.P.: Regularity theory for second order integro-PDEs. Potential Anal. 54, 387–407 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ros-Oton, X., Serra, J.: The Dirichlet problem for the fractional Laplacian: regularity up to the boundary. J. Math. Pures Appl. 101, 275–302 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ros-Oton, X., Serra, J.: Boundary regularity for fully nonlinear integro-differential equations. Duke Math. J. 165, 2079–2154 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ros-Oton, X., Serra, J.: Boundary regularity estimates for nonlocal elliptic equations in \(C^1\) and \(C^{1,\alpha }\) domains. Ann. Math. 196, 1637–1668 (2017)

    MATH  Google Scholar 

  37. Schilling, R., Song, R., Vondraček, Z.: Bernstein Functions, Walter de Gruyter, (2010)

  38. Serrin, J.: A symmetry problem in potential theory. Arch. Rational Mech. Anal. 43, 304–318 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  39. Soave, N., Valdinoci, E.: Overdetermined problems for the fractional Laplacian in exterior and annular sets. J. Anal. Math. 137, 101–134 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the referee for his/her careful reading of the manuscript and suggestions. This research of Anup Biswas was supported in part by a Swarnajayanti fellowship (DST/SJF/MSA-01/2019-20). Mitesh Modasiya is partially supported by CSIR PhD fellowship (File no. 09/936(0200)/2018-EMR-I).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anup Biswas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, A., Modasiya, M. & Sen, A. Boundary regularity of mixed local-nonlocal operators and its application. Annali di Matematica 202, 679–710 (2023). https://doi.org/10.1007/s10231-022-01256-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10231-022-01256-0

Keywords

Mathematics Subject Classification

Navigation